K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2021

a) Ta có: \(\angle KAC=\angle KBC=90-\angle ACB=\angle HAC\)

mà \(AC\bot HK\Rightarrow\) H và K đối xứng với nhau qua AC

b) Ta có: \(\angle BEM+\angle BDM=90+90=180\Rightarrow BEMD\) nội tiếp

\(\Rightarrow\angle BED=\angle BMD=90-\angle DBM\)

Tương tự \(\Rightarrow MEFC\) nội tiếp \(\Rightarrow\angle FEC=\angle FMC=90-\angle MCA\)

mà \(\angle DBM=\angle MCA\) (ABMC nội tiếp)

\(\Rightarrow\angle BED=\angle CEF\) mà B,E,C thẳng hàng \(\Rightarrow D,E,F\) thẳng hàng

c) Ta có: \(\angle NKM=\angle BKM=\angle BCM=\angle EFM=\angle NFM\)

\(\Rightarrow MFKN\) nội tiếp mà \(MF\parallel NK(\bot AC)\)

\(\Rightarrow MFKN\) là hình thang cân \(\Rightarrow\angle MNH=\angle FKH=\angle FHK\) (K và H đối xứng qua AC)

\(\Rightarrow HF\parallel NM\) mà \(FM\parallel NH\) \(\Rightarrow MNHF\) là hình bình hành

có MN và HF là 2 đường chéo cắt nhau tại I

\(\Rightarrow I\) là trung điểm MHundefined

 

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề 

a: ΔOBC cân tại O

mà OM là trung tuyến

nên OM vuông góc BC

ΔOAC cân tại O

mà ON là trung tuyến

nên ON vuông góc AC

Vì góc OMC+góc ONC=180 độ

nên OMCN nội tiếp

23 tháng 5 2017

 

Vì DPN+DQN=90o+90o=180o nên DPNQ là tứ giác nội tiếp

=>QPN=QDN (hai góc nội tiếp cùng chắn cung QN) (5)

Mặt khác DENF là tứ giác nội tiếp nên QDN=FEN  (6)

Từ (5) và (6) ta có FEN=QPN (7)

Tương tự ta có: EFN=PQN  (8)

Từ (7) và (8) suy ra  Δ N P Q ~ Δ N E F ( g . g ) = > P Q E F = N Q N F

Theo quan hệ đường vuông góc – đường xiên, ta có

N Q ≤ N F = > P Q E F = N Q N F ≤ 1 = > P Q ≤ E F

Dấu bằng xảy ra khi Q ≡ F NF DF D, O, N thẳng hàng.

Do đó PQ max khi M là giao điểm của AC và BN, với N là điểm đối xứng với D qua O.

loading...  loading...  loading...  loading...  

3 tháng 3 2020

O A B C M K H E d P F I

1) Dễ thấy \(\widehat{HCB}=\widehat{ACB}=90^o\)

tứ giác CBKH có \(\widehat{HKB}=\widehat{HCB}=90^o\)nên là tứ giác nội tiếp

\(\Rightarrow\widehat{HCK}=\widehat{HBK}\)( 1 )

Mà \(\widehat{ACM}=\widehat{ABM}=\frac{1}{2}sđ\widebat{AM}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{ACM}=\widehat{ACK}\)

2) Xét \(\Delta AMC\)và \(\Delta BEC\)có :

AM = BE ; AC = BC ; \(\widehat{MAC}=\widehat{CBE}=\frac{1}{2}sđ\widebat{MC}\)

\(\Rightarrow\Delta AMC=\Delta BEC\)( c.g.c )

\(\Rightarrow MC=EC\)

Ta có : \(\widehat{CMB}=\frac{1}{2}sđ\widebat{BC}=45^o\)

Suy ra \(\Delta ECM\)vuông cân tại C

3) Ta có : \(\frac{AP.MB}{AM}=R=OB\Rightarrow\frac{AP}{MA}=\frac{OB}{MB}\)

Xét \(\Delta APM\)và \(\Delta OBM\), ta có :

\(\frac{AP}{MA}=\frac{OB}{MB}\)\(\widehat{PAM}=\widehat{MBO}=\frac{1}{2}sđ\widebat{AM}\)

\(\Rightarrow\Delta APM\approx\Delta BOM\left(c.g.c\right)\)

\(\Rightarrow\Delta APM\)cân tại P ( vì \(\Delta BOM\)cân tại O )

\(\Rightarrow PA=PM\)

Gọi giao điểm của BM và ( d ) là F ; giao điểm của BP với HK là I

Xét tam giác vuông AMF có PA = PM nên PA = PM = PF

Theo định lí Ta-let, ta có :

\(\frac{HI}{FP}=\frac{BI}{BP}=\frac{KI}{AP}\Rightarrow HI=KI\)

vì vậy PB đi qua trung điểm của HK

10 tháng 6 2019

Em không vẽ được hình, xin thông cảm

a, Ta có góc EAN=  cungEN=cung EC+ cung EN

Mà cung EC= cung EB(E là điểm chính giữa cung BC)

=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)

=> tam giác AEN đồng dạng tam giác FED

Vậy tam giác AEN đồng dạng tam giác FED

b,Ta có EC=EB=EM

Tam giác EMC cân tại E => EMC=ECM

 MÀ EMC+AME=180, ECM+ABE=180

=> AME = ABE

=> tam giác ABE= tam giác AME

=> AB=AM => tam giác ABM cân tại A

Mà AE là phân giác => AE vuông góc BM

CMTT => AC vuông góc EN

MÀ AC giao BM tại M

=> M là trực tâm tam giác AEN

Vậy M là trực tâm tam giác AEN

c,  Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH

Vì M là trực tâm của tam giác AEN

=> \(EN\perp AN\)

Mà \(OI\perp AN\)(vì I là trung điểm của AC)

=> \(EN//OI\)

MÀ O là trung điểm của EH

=> I là trung điểm của MH (đường trung bình trong tam giác )

=> tứ giác AMNH là hình bình hành 

=> AH=MN

Mà MN=NC

=> AH=NC

=> cung AH= cung NC

=> cung AH + cung KC= cung KN

Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )

NBK là góc nội tiếp chắn cung KN

=> gócKMC=gócKBN

Hay gócKMC=gócKBM

=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)

Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

10 tháng 6 2019

Anh Khang nè,e cung cấp hình nha:3