Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người giúp mình với!!!!!!!!!!!!!!!!!!
cảm ơn mọi người
b) \(x^4+2x^2+1=0\)
\(\Rightarrow\left(x^2+1\right)^2=0\)
Mà: \(\left(x^2+1\right)^2>0\)
=> P(x) ko có nghiệm
c) \(16x^2y^5-2x^3y^2=\dfrac{15}{4}\)
Sửa đề: f(x) = x² - 4x + 3
a) f(0) = 0 - 4.0 + 3 = 3
f(1) = 1 - 4.1 + 3 = 0
f(3) = 9 - 4.3 + 3 = 0
b) x = 1 và x = 3 là nghiệm của đa thức f(x) vì f(1) = 0 và f(3) = 0
a ) Ta có \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Điều kiện đúng A ≠ - 1
b ) Gọi ƯCLN ( a2+a-1; a2+a+1 )
Vì a2 + a + 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ
Mặt khác , 2 = [ ( a2+a+1 ) - ( a2+a-1 ) ] ⋮ d
Nên d = 1 tức là a2+a+1 và a2+a-1 là nguyên tố cùng nhau
⇒ Biểu thức A là phân số tối giản
\(a)\) Ta có :
\(A=\frac{1}{x^2-4x+7}\)
\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)
\(A=\frac{1}{\left(x-2\right)^2+3}\)
Lại có :
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)
\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(f\left(x\right)=x^2-4x+7\)
\(f\left(x\right)=\left(x^2-4x+4\right)+3\)
\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm
Chúc bạn học tốt ~
Xét x=-1 =>P(-1)=a.(-1)2-1b+c=a-b+c
Thay a-b+c=0 vào P(1)=>P(-1)=0
=>-1 là nghiệm của đa thức P(x) (điều phải chứng minh)