Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\left\{{}\begin{matrix}A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\\B=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\end{matrix}\right.\)
Ta có:
\(B=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{59.60}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{59}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{60}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{60}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{30}\right)\)
\(=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\)
\(\Rightarrow B=A\)
Vậy \(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\) (Đpcm)
Ta có:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+......+\dfrac{1}{59.60}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{59}-\dfrac{1}{60}\)
= \(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{59}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)
- \(2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{60}\right)\) - \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)+ \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)
- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)
= \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)
Vậy\(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+....+\dfrac{1}{59.60}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{9}\)
`=`\(\dfrac{2}{9}\)
Vậy, \(A=\dfrac{2}{9}\)
`b)`
\(B=\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{23\cdot24}+\dfrac{1}{24\cdot25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\left(\dfrac{1}{6}-\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)
Vậy, \(B=\dfrac{4}{25}\)
`c)`
\(C=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
`=`\(1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-...-\dfrac{1}{100}\)
`=`\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
Vậy, \(C=\dfrac{99}{100}\)
a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$
$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$
$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$
$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$
$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$
b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$
$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$
Nhận xét thấy:
\(\dfrac{1}{1.2}\)= 1-\(\dfrac{1}{2}\); \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\);...
Ta có
A= 1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
A= 1- \(\dfrac{1}{6}\)
A= \(\dfrac{5}{6}\)
Vậy A= \(\dfrac{5}{6}\)
CAU NAY RAT DE NHA BAN
A=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)
A=1-\(\dfrac{1}{6}\)
=>A=\(\dfrac{5}{6}\)
Ta có:
\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
d, `3,15+2,4=5,55`
e, \(\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{9}{11}=\dfrac{5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)=\dfrac{5}{7}.\dfrac{11}{11}=\dfrac{5}{7}.1=\dfrac{5}{7}\)
f, `1,25.3,6+3,6.8,75=3,6(1,25+8,75)=3,6.10=36`
\(h,\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
\(e\dfrac{5}{7}\times\left(\dfrac{2}{11}+\dfrac{9}{11}\right)=\dfrac{5}{7}\times1=\dfrac{5}{7}\)
\(f3.6\times\left(1.25+8.75\right)=3.6\times10=36\)
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{217.218}\)
A = \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{217}-\dfrac{1}{218}\)
A = 1 - \(\dfrac{1}{218}\)
B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}\) + ... + \(\dfrac{1}{218}\)
Xét dãy số 110; 111; 112; ...; 218, dãy số này có số số hạng là:
(218 - 110) : 1 + 1 = 109 (số)
Mặt khác \(\dfrac{1}{110}\) > \(\dfrac{1}{111}>\dfrac{1}{112}>...>\dfrac{1}{218}\)
⇒ B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}+...+\dfrac{1}{218}\) < \(\dfrac{1}{110}\) + \(\dfrac{1}{110}\)+ ... +\(\dfrac{1}{110}\)
B < \(\dfrac{1}{110}\) x 109
B < 1 - \(\dfrac{1}{110}\)
\(\dfrac{1}{128}\) < \(\dfrac{1}{110}\) ⇒ A = 1 - \(\dfrac{1}{128}\) > 1 - \(\dfrac{1}{110}\) > B
A > B