K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

bạn nghĩ thiếu gì?

NV
17 tháng 6 2020

Cô giáo cho đề thế nào thì ghi đủ ra đừng thiếu 1 chữ nào đi bạn.

Nhìn đề là biết thiếu rồi :)

Cho khơi khơi như vầy thì A chỉ có min, không có max

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

1. Đề sai với $a=1; b=0; c=-1$

2. Vì $a+b+c=0\Rightarrow a+b=-c$. Khi đó:

$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc$ (đpcm)

3. Đề sai.

$a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5$

$=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5$

$=[(-c)^2-2ab][(-c)^3-3ab(-c)]+a^2b^2c+c^5$

$=(c^2-2ab)(3abc-c^3)+a^2b^2c+c^5$

$=3abc^3-c^5-6a^2b^2c+2abc^3+a^2b^2c+c^5$

$=3abc^3-6a^2b^2c+2abc^3+a^2b^2c$

$=abc(5c^2-5ab)=5abc(c^2-ab)$

2:Ta có: a+b+c=0

nên \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

26 tháng 8 2018

\(2x\left(x-1\right)-x^2+6=0\)

\(2x^2-2x-x^2+6=0\)

\(x^2-2x+6=0\)

\(x^2-2x+1+5=0\)

\(\left(x-1\right)^2+5=0\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+5\ge5>0\forall x\)

Mà: \(\left(x-1\right)^2+5=0\) => vô lí 

Vậy : ko có giá trị của c thỏa mãn

=.= hok tốt!!

26 tháng 8 2018

Ta có \(2x.\left(x-1\right)-x^2+6=0\)

\(\Rightarrow2x^2-2x-x^2+6=0\)

\(\Rightarrow x^2-2x+6=0\)

\(\Rightarrow\left(x^2-2x+1\right)+5=0\)

\(\Rightarrow\left(x-1\right)^2=-5\)

Vì \(\left(x-1\right)^2\ge0\)với mọi x nên không tìm được x

Vậy...

Bài 22: 

a: =>(x-3)(2x+5)=0

=>x=3 hoặc x=-5/2

b: =>(x-2)(x+2+3-2x)=0

=>(x-2)(5-x)=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

d: =>(2x-7)(x-2)=0

=>x=7/2 hoặc x=2

e: =>(2x-5-x-2)(2x-5+x+2)=0

=>(x-7)(3x-3)=0

=>x=7 hoặc x=1

f: =>x(x-1)-3(x-1)=0

=>x=1 hoặc x=3

24 tháng 1 2022

21. 
a) (3x-2)(4x+5)=0
Th1: 3x-2=0          Th2: 4x+5=0
            3x=2                      4x=-5
                                            x=\(\dfrac{-5}{4}\)
Vậy ...
b) (2,3x-6,9)(0,1x+2)=0
Th1: 2,3x-6,9=0                 Th2: 0,1x+2=0
              2,3x=6,9                           0,1x=-2
                   x=3                                   x=-0,2
Vậy ...
c) (4x+2)(x2+1)=0
2(2x+1)(x2+1)=0
Th1: 2x+1=0                 Th2: x2+1=0
             2x=-1                             x2=-1(vô lí)
               x=-1/2                           (loại)
Vậy ...
d) (2x+7)(x-5)(5x+1)=0
Th1: 2x+7=0            Th2: x-5=0        Th3: 5x+1=0
             2x=-7                     x=5                     5x=-1
               x=-7/2                                               x=-1/5
Vậy ...
 

4 tháng 2 2017

\(\frac{2a}{x+a}=1\)

2a = x + a

a + a = x + a

=> a = x

12 tháng 7 2016

a) \(S=25x^2-20x+7=\left[\left(5x\right)^2-2.5x.2+4\right]+3=\left(5x-2\right)^2+3>0\) với mọi x

b) \(P=9x^2-6xy+2y^2+1=\left[\left(3x\right)^2-2.3x.y+y^2\right]+y^2+1=\left(3x-y\right)^2+y^2+1>0\)với mọi x

12 tháng 7 2016

25x2  - 20x + 7 = ( 25x2 - 20x + 4 ) + 3 = (5x-2)2 + 3 > 0

còn câu b, P = 9x2 - 6xy + 2y2 + 1 = (3x-y)2 + y2 + 1 >0

AH
Akai Haruma
Giáo viên
7 tháng 7 2020

Lời giải:

ĐK: $x\neq 2019$

PT $\Rightarrow A(x-2019)^2=2019x$

$\Leftrightarrow Ax^2-x(4038A+2019)+A.2019^2=0(*)$

Vì biểu thức $A$ xác định nên PT $(*)$ có nghiệm.

$\Rightarrow \Delta=(4038A+2019)^2-4A^2.2019^2\geq 0$

$\Leftrightarrow 2019^2(2A+1)^2-4A^2.2019^2\geq 0$

$\Leftrightarrow (2A+1)^2-(2A)^2\geq 0$

$\Leftrightarrow 4A+1\geq 0$

$\Leftrightarrow A\geq -\frac{1}{4}$
Vậy GTNN của $A$ là $\frac{-1}{4}$. $A$ không có GTLN

10 tháng 7 2020

Vãi toán 8 sao đau nào thế @@

\(x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

\(\left(a-b\right)^3-\left(a-b\right)^3\)

\(=\left(a-b\right)^2\left(a-b-a+b\right)\)

\(\left(a^2+2ab+b^2\right)+\left(a+b\right)^3\)

\(=\left(a+b\right)^2+\left(a+b\right)^3\)

\(=\left(a+b\right)^2\left(a+b+1\right)\)

15 tháng 7 2016

                                                          ......giải ....

  a. \(\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)                                            

 b ...ko cần làm .. =0

c.. =(a+b)^2 +(a+b)^3=(a+b)[ (a+b)+ (a+b)^2  ]

 ... check mk đó ..  The end•••