Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
a) Ta có: \(A\left(x\right)=ax^2+bx+c\)
Thay \(A\left(-1\right)\) ta được:
\(A\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a+c-b\)
\(=b-8-b=-8\)
b) \(\left\{{}\begin{matrix}A\left(0\right)=4\\A\left(1\right)=9\\A\left(2\right)=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b+c=9\\4a+2b+c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\4a+2b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a=0\\b=5\end{matrix}\right.\)
c)
Ta có: \(\left\{{}\begin{matrix}A\left(2\right)=4a+2b+c\\A\left(-1\right)=a-b+c\end{matrix}\right.\)
\(\Leftrightarrow A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
\(\Leftrightarrow A\left(2\right)=-A\left(-1\right)\)
\(\Leftrightarrow A\left(2\right)\times A\left(-1\right)=-\left[A\left(2\right)\right]^2\le0\)
\(\begin{array}{l}A + B + C\\ = (3{x^4} - 2{x^3} - x + 1) + ( - 2{x^3} + 4{x^2} + 5x) + ( - 3{x^4} + 2{x^2} + 5)\\ = 3{x^4} - 2{x^3} - x + 1 - 2{x^3} + 4{x^2} + 5x - 3{x^4} + 2{x^2} + 5\\ = (3{x^4} - 3{x^4}) + ( - 2{x^3} - 2{x^3}) + (4{x^2} + 2{x^2}) + ( - x + 5x) + (1 + 5)\\ = 0 + ( - 4{x^3}) + 6{x^2} + 4x + 6\\ = - 4{x^3} + 6{x^2} + 4x + 6\\A - B + C\\ = (3{x^4} - 2{x^3} - x + 1) - ( - 2{x^3} + 4{x^2} + 5x) + ( - 3{x^4} + 2{x^2} + 5)\\ = 3{x^4} - 2{x^3} - x + 1 + 2{x^3} - 4{x^2} - 5x - 3{x^4} + 2{x^2} + 5\\ = (3{x^4} - 3{x^4}) + ( - 2{x^3} + 2{x^3}) + ( - 4{x^2} + 2{x^2}) + ( - x - 5x) + (1 + 5)\\ = 0 + 0 + ( - 2{x^2}) - 6x + 6\\ = - 2{x^2} - 6x + 6\\A - B - C\\ = (3{x^4} - 2{x^3} - x + 1) - ( - 2{x^3} + 4{x^2} + 5x) - ( - 3{x^4} + 2{x^2} + 5)\\ = 3{x^4} - 2{x^3} - x + 1 + 2{x^3} - 4{x^2} - 5x + 3{x^4} - 2{x^2} - 5\\ = (3{x^4} + 3{x^4}) + ( - 2{x^3} + 2{x^3}) + ( - 4{x^2} - 2{x^2}) + ( - x - 5x) + (1 - 5)\\ = 6{x^4} + 0 + ( - 6{x^2}) - 6x + ( - 4)\\ = 6{x^4} - 6{x^2} - 6x - 4\end{array}\)
ta có a+b+c=0=>(a+b+c)^2=0
=>a^2+b^2+c^2+2ab+2ac+2bc=0
=>1+2(ab+bc+ac)=0(vì a^2+b^2+c^2=1)
=>ab+bc+cd=-1/2
=>(ab+bc+cd)^2=1/4
=>a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=1/4
=>a^2b^2+a^2c^2+b^2c^2+2abc(a+b+c)=1/4
=>a^2b^2 +a^2c^2+b^2c^2=1/4(vì a+b+c=0)*
mặt khác a^2+b^2+c^2=1(gt)
=>(a^2+b^2+c^2)^2=1
=>a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1
=>a^4+b^4+c^4+2(a^2b^2+a^2c^2+b^2c^2)=1
=>a^4+b^4+c^4+2.1/4=1(theo *)
=>a^4+b^4+c^4=1- 1/2=1/2(dpcm)