Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}\cdot(-2)^2\)
\(=\frac{6}{7}+\frac{5}{8}:\frac{5}{1}-\frac{3}{16}\cdot4\)
\(=\frac{6}{7}+\frac{5}{8}\cdot\frac{1}{5}-\frac{3}{16}\cdot4\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3\cdot4}{16}\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3\cdot1}{4}\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3}{4}=\frac{48+7-42}{56}=\frac{13}{56}\)
\(b,\frac{2}{3}+\frac{1}{3}\cdot\left[\frac{-2}{3}+\frac{5}{6}\right]:\frac{2}{3}\)
\(=\frac{2}{3}+\frac{1}{3}\cdot\left[\frac{-4+5}{6}\right]:\frac{2}{3}\)
\(=\frac{2}{3}+\frac{1}{3}\cdot\frac{1}{6}:\frac{2}{3}=\frac{2}{3}+\frac{1}{3}\cdot\frac{1}{6}\cdot\frac{3}{2}=\frac{2}{3}+\frac{1}{12}=\frac{8}{12}+\frac{1}{12}=\frac{9}{12}=\frac{3}{4}\)
c, Xem lại đề
d, \(\frac{-3}{5}+\left[\frac{-2}{5}-99\right]\)
\(=\frac{-3}{5}+\frac{-497}{5}=\frac{-500}{5}=-100\)
b, Tìm x
\(\left[\frac{2}{11}+\frac{1}{3}\right]\cdot x=\left[\frac{1}{7}-\frac{1}{8}\right]\cdot56\)
\(\Rightarrow\left[\frac{2}{11}+\frac{1}{3}\right]\cdot x=\left[\frac{8}{56}-\frac{7}{56}\right]\cdot56\)
\(\Rightarrow\left[\frac{6}{33}+\frac{11}{33}\right]\cdot x=1\)
\(\Rightarrow\frac{17}{33}\cdot x=1\)
\(\Rightarrow x=1:\frac{17}{33}=1\cdot\frac{33}{17}=\frac{33}{17}\)
Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (*)
Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương
Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương
Xin lỗi ,Cm là STN thì mình mới làm được
thiếu dữ kiện rồi sao giải đc