K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Để : \(\frac{n+7}{3n-1}\in N\) 

Thì n + 7 chia hết cho 3n - 1

<=> 3n + 21 chia hết cho 3n - 1

<=> 3n - 1 + 22 chia hết cho 3n - 1

=> 22 chia hết cho 3n - 1

=> 3n - 1 thuộc Ư(22) = {22;11;2;1}

Ta có bảng : 

3n - 1221121
3n231232
n 41 
3 tháng 2 2019

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

13 tháng 1 2021

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2
18 tháng 7 2017

 avt1254896_60by60.jpg k mình nha

18 tháng 7 2017

BAI NAY MIK TRA LOI CHO BN QUA TIN NHAN RUI , K MIK DI

5 tháng 8 2018

Bài 2:

Gọi số cần tìm là A
*2,3,4,5,6 có BCNN là 60
(A - 1) chia hết cho 2,3,4,5,6 nên A = 60a (a là số tự nhiên khác 0)
=> A = 60a + 1
*A chia hết cho 7 nên: A = 60a+1 = 7b
=> 7b = 56a + 4a + 1 = 7.8a + 4a + 1
=> b = 8a + (4a+1)/7
Vì b nguyên dương nên (4a+1) chia hết cho 7
A nhỏ nhất khi a nhỏ nhất thỏa (4a+1) chia hết cho 7
=> a = 5
=> A = 301

**Dạng chung:
Từ trên ta có 4a+1 = 7c = 8c - c
=> a = 2c - (c+1)/4
=> c+1 chia hết cho 4
=> c+1 = 4k
=> c = 4k-1
Thay trở lại ta có:
a = 2c - (c+1)/4 = 8k-2 - (4k-1+1)/4 = 8k-2 -k = 7k-2
A = 60a + 1 = 60(7k-2) + 1 = 420k - 119

Công thức chung là A = 420k - 119 với k nguyên dương
Rõ ràng k nhỏ nhất là 1 nên ứng với A = 301

8 tháng 12 2015

Gọi ƯCLN(3n+1;4n+1)=d

Ta có: 3n+1 chia hết cho d

=>4(3n+1) chia hết cho d

12n+4 chia hết cho d

có 4n+1 chia hết cho d

=>3(4n+1) chia hết cho d

12n+3 chia hết cho d

=>12n+4-(12n+3) chia hết cho d

1 chia hết cho d hay d=1

Do đó, ƯCLN(3n+1;4n+1)=1

Vậy với mọi nEN thì 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau

15 tháng 6 2016

Ta có :

4n - 5 = 4n + 2 - 7 = (3n + 2) + (n - 7)

3n + 2 chia cho 4n - 5 là số tự nhiên nên 3n+ 2 chia hết cho 4n - 5

Vì 3n - 2 chia hết cho 4n - 5

=> 3n + 2 chia hết cho  (3n + 2) + (n - 7)

=> 3n + 2 lớn hơn hoặc bằng (3n + 2) + (n - 7)

Ở đây chỉ có trường hợp 

3n + 2 bằng (3n + 2) + (n - 7)

=> n-7 = 0

=> n = 7