Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
a. ta có : \(BC^2=AB^2+AC^2\)
\(10^2=8^2+6^2\)
=> ABC vuông tại A ( pitago đảo )
b. xét tam giác vuông BAD và tam giác vuông BED có:
B: góc chung
BD : cạnh chung
Vậy...
=> AD = AE ( 2 góc tưng ứng )
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow100=36+64\)* đúng *
Vậy tam giác ABC vuông tại A
b, Xét tam giác ABD và tam giác CBD ta có :
^ABD = ^CBD ( BD là phân giác )
^BAD = ^BCD = 900
BD _ chung
Vậy tam giác ABD và tam giác CBD ( ch - gn )
=> AD = DC ( 2 cạnh tương ứng )
ta có : BC2 = 102 = 100
AC2 +AB2 =62 + 82 =36 +64 = 100
BC2 =AC2 + AB2
suy ra tam giác ABC vuông tại A ( định lý pytago đảo )
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: ta có: ΔABD=ΔEBD
nên BA=BE
hay ΔBAE cân tại B
d: Ta có: ΔABD=ΔEBD
nên DA=DE
hay D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
a: BC=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC>DE
a, AB = 6 => AB^2 = 6^2 = 36
AC = 8 => AC^2 = 8^2 = 64
=> AB^2 + AC^2 = 36 + 64 = 100
BC = 10 => BC^2 = 10^2 = 100
=> BC^2 = AB^2 + AC^2
=> tam giác ABC vuông tại A (định lí PTG đảo)
a)Ta có: BC2=52=25 (1)
AB2+AC2=32+42=25 (2)
Từ (1);(2)=>BC2=AB2+AC2(=25)
=>tam giác ABC vuông tại A (PyTaGo đảo)
b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:
BD:cạnh chung
^ABD=^EBD (vì BD là phân giác của ^ABE)
=>tam giác ABD=tam giác EBD(ch-gn)
=>DA=DE (cặp cạnh t.ứ)
b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)
Mà DA=DE(cmt)
=>DF>DE
Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:
DA=DE(cmt)
^ADF=^EDC (2 góc đối đỉnh)
=>tam giác ADF=tam giác EDC (cgv-gnk)
=>DF=DC (cặp cạnh t.ứ)
DF ko bằng DE bn nhé!
a: BC=căn 3^2+4^2=5cm
b,d: Đề bài yêu cầu gì?
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó; ΔABD=ΔEBD