Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: A= 12+15+21+x
A= 48+x
+Để A chia hết cho <=> 48+x chia hết cho 3
mà 48 chia hết cho 3 => x phải chia hết cho 3
+ Để A ko chia hết cho 3 <=> 48 +x ko chia hết cho 3
mà 48 chia hết cho 3 => x ko chia hết cho 3
ta thấy : 12\(⋮3\); \(15⋮3\);\(21⋮3\)
TH1 : để A\(⋮3\)thì x\(⋮3\)
=> \(x\in B\left(3\right)\)
TH2: để Ako chia hết 3 thì
x phải ko chia hết cho 3
TRần Lê Mai Hoa bạn lên xem chỗ bạn Ha Quang Do ấy mình có trả lời rồi
A, Để aaa chia hết cho 3 thì a+ a+ a phải chia hết cho 3
Suy ra: a x 3 chia hết cho 3 ( có số 3 ở phép nhân)
B, Dựa theo bài trên: a x 3 sẽ chia hết cho 9 thì ta Ví Dụ được 1 giái trị sau:
9 x 1 = 9 suy ra a = 3 ( 3 x 3= 9) Sau đó cứ lấy 9 x 2; 9 x3 ; 9 x 4; 9 x 5 v...v....v...v...v
\(n^2\)- n = nn - n.1 = n . ( n - 1)
Mà n và n-1 là 2 số tự nhiên liên tiếp hay n và n-1 là một số lẻ hoặc một số chẵn
\(\Rightarrow\) n chia hết cho 2 hoặc (n-1) chia hêt cho 2
\(\Rightarrow\) n.(n-1) chia hết cho 2 hay \(n^2\)- n chia hết cho 2
+A=60n+45=15(4n+3) chia hết cho 15
+A=60n+45=(60n+30)+15=30(2n+1)+15
30(2n+1) chia hết cho 30 nhưng 15 không chia hết chgo 30 nên A không chia hết cho 30
n là số tự nhiên nên n có dạng: n = 3k; n = 3k +1; n = 3k +2 (k \(\in\) N)
Vơi n = 3k ta có: n(n + 1).(n + 5) = 3k(3k+1).(3k+5)⋮ 3
Nếu n = 3k + 1 ta có:
n(n+1)(n+5)=(3k + 1).(3k+ 1+1).(3k + 1+ 5) = (3k + 1)(3k+2)(3k+6) ⋮ 3
Nếu n =3k + 2 ta có:
n(3n +2 + 1).(3n + 2 + 5) = n(3n+3)(3n+7) ⋮ 3
Tư những lập luận và phân tích trên ta có: n(n+1)(n+5)⋮ 3 ∀ n \(\in\) N
a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM
b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.
Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9
a) A = n3 +3n2 + 2n
A = n3 + n2 + 2n2 + 2n
A = n2.( n+1) + 2n.(n+1)
A = (n+1).(n2+2n)
A = (n+1).n.(n+2)
A = n.(n+1).(n+2)
Vì n.(n+1).(n+2) là tích 3 số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3
=> A chia hết cho 3
Chứng tỏ A chia hết cho 3 với mọi n nguyên
b) Ta có: 15 = 3.5
Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5
Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5
Mặt khác n<10 nên n<n+1<n+2<12
Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11
Vậy các giá trị của n tìm được là: 3;4;5;8;9