K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

<br class="Apple-interchange-newline"><div id="inner-editor"></div>x−z−2 =x−y−1 =y−z−1 ⇒x−z=2(x−y)=2(y−z)(1)

a) (x−z)3=(x−z)2(x−z)=(2(x−y))2(2(y−z))

⇔(x−z)3=8(x−y)2(y−z)ĐPCM a)

5 tháng 7 2017

a.

\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{15+5+3}=\frac{10}{23}\) [theo tính chất của dãy tỉ số bằng nhau]

=> x = 10/23 * 15 = 150/23

y = 10/23 * 5 = 50/23

z = 10/23 * 93 = 30/23

b.

\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{2x}{30}=\frac{3y}{15}=\frac{z}{3}=\frac{2x-3y+z}{30-15+3}=\frac{32}{18}=\frac{16}{9}\)[theo tính chất của dãy tỉ số bằng nhau]

=> 2x = 16/9 * 30 = 160/3 => x = 80/3

3y = 16/9 * 15 = 80/3 => y = 80/9

z = 16/9 * 3 = 48/9

c.

\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{x}{15}=\frac{2y}{10}=\frac{3z}{9}=\frac{x+2y-3z}{15+10-9}=\frac{14}{16}=\frac{7}{8}\)[theo tính chất của dãy tỉ số bằng nhau]

=> x = 7/8 * 15 = 105/8

2y = 7/8 * 10 = 70/8 => y = 35/8

3z = 7/8 * 9 = 63/8 => z = 21/8

16 tháng 6 2016

\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)

Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)

a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)

\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)

b) Từ (1) => x + z = 2y 

Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)

Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)

=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM

17 tháng 6 2016

Bạn đinh thùy linh trả lời rõ ràng hơn được ko 

8 tháng 10 2021

x:y:z=4:5:6

--> x/4=y/5=z/6

Đặt x=4k; y=5k; z=6k

x^2-2y^2+z^2=18

(4k)^2-2.(5k)^2+(6k)^2=18

2k^2=18

k^2=9

k=3 hoặc k=-3

Khi k=3

--> x=4.3=12

y=5.3=15

z=6.3=18

Khi k=-3

--> x=4.(-3)=-12

y=5.(-3)=-15

z=6.(-3)=-18

25 tháng 7 2016

ko ai giúp tôi à

25 tháng 4 2017

trời sao khó thế

bn vào đây thử nhé!! Câu hỏi của Hoàng Lan Hương - Toán lớp 7 - Học toán với OnlineMath

5757547457484457485323322146787970678545745645

21 tháng 4 2017

từ điều kiện suy ra \(\frac{y+z}{x}-1=\frac{x+z}{y}-1=\frac{x+y}{z}-1\)1\(\Rightarrow\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\)

\(\frac{y+z}{x}=\frac{x+z}{y}\Rightarrow\frac{y+z}{x}-\frac{x+z}{y}=0\)\(\Rightarrow\frac{y\left(y+z\right)-x\left(x+z\right)}{xy}=0\)

\(\Rightarrow y^2+yz-xz-x^2=0\Rightarrow y^2-x^2+yz-zx=0\)\(\Rightarrow\left(y+x\right)\left(y-x\right)+z\left(y+x\right)\)=0

\(\Rightarrow\left(y-x\right)\left(x+y+z\right)=0\)\(\Rightarrow\)hoặc y-x=0 hoặc x+y+z=0 \(\Rightarrow\)x=y hoặc x+y=-z

giải tương tự ta có hoặc x=y=z hoặc x+y=-z;y+z=-x;x+z=-y

*x=y=z thay vào biểu thức ta có bt=8

*x+y=-z;y+z=-x;x+z=-y ta có bt =\(\left(\frac{x+y}{y}\right)\left(\frac{z+y}{z}\right)\left(\frac{x+z}{x}\right)\)=-1

3 tháng 10 2017

Ta có :

\(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(y+x\right)\left(z+y\right)\left(x+z\right)}{xyz}\)

+ ) Nếu \(x+y+z\ne0\)

Theo tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(=\frac{\left(y+z-x\right)\left(z+x-y\right)\left(x+y-x\right)}{x+y+z}\)

\(=\frac{x+y+z}{x+y+z}\)

\(=1\)

\(\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}\Leftrightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}}\)

Do đó , \(B=\frac{\left(y+x\right)\left(z+y\right)\left(x+z\right)}{xyz}=\frac{2z.2x.2y}{xyz}=8\)

+ ) Nếu \(x+y+z\ne0\text{thì}\hept{\begin{cases}x+y=-z\\x+z=-y\\y+z=-x\end{cases}}\)

Do đó , \(B=\frac{\left(-x\right).\left(-y\right).\left(-z\right)}{xyz}=-1\)

Vậy : \(B=-1\text{hoặc}B=8\)

9 tháng 10 2021

\(x:y:z=3:5:\left(-2\right)\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=-\dfrac{16}{4}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-4\right).3=-12\\y=\left(-4\right).5=-20\\z=\left(-4\right).\left(-2\right)=8\end{matrix}\right.\)