Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 4x = 7y
<=> \(\dfrac{4}{y}=\dfrac{7}{x}\)
<=> \(\dfrac{16}{y^2}=\dfrac{49}{x^2}\)
=> \(\dfrac{16+49}{x^2+y^2}=\dfrac{65}{260}=\dfrac{1}{4}\)
=> \(\left\{{}\begin{matrix}x=28\\y=16\end{matrix}\right.\)
Đoạn biến đổi từ \(\dfrac{16}{y^2}=\dfrac{49}{x^2}\) sang \(\dfrac{16+49}{x^2+y^2}\) bạn nên xài dấu = thì hợp lý hơn, vì như vậy bạn mới có \(\dfrac{16}{y^2}=\dfrac{49}{x^2}=\dfrac{1}{4}\) để tìm ra x, y
c) \(2x=3y=5z\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng tính chát dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒\(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
Lời giải:
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$\Rightarrow \frac{x}{21}=\frac{y}{14}$
$5y=7z\Rightarrow \frac{y}{7}=\frac{z}{5}\Rightarrow \frac{y}{14}=\frac{z}{10}$
Vậy:
$\frac{x}{21}=\frac{y}{14}=\frac{z}{10}$
$=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2$
$\Rightarrow x=21.2=42; y=14.2=28; z=10.2=20$
a) Áp dụng t/c dtsbn:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{3}{x}=\dfrac{7}{y}\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Và \(x+16=y\Rightarrow y-x=16\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{y-x}{7-3}=\dfrac{16}{4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
\(a)\)Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\cdot(2x+3)-(4x+5)}{2\cdot(5x+2)-(10x+2)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)
Suy ra :
\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow1\cdot(5x+2)=2\cdot(2x+3)\)
\(5x+2=4x+6\)
\(5x-4x=6-2\)
\(x=4\)
\(b)\)Ta có : \(\frac{4}{x-3}=\frac{8}{y-6}=\frac{20}{z-15}\)
\(\Rightarrow\frac{x-3}{4}=\frac{y-6}{8}=\frac{z-15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{6}{8}=\frac{z}{20}-\frac{15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{3}{4}=\frac{z}{20}-\frac{3}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{8}=\frac{z}{20}\)
Đặt : \(\frac{x}{4}=\frac{y}{8}=\frac{z}{20}=k\Rightarrow x=4k;y=8k;z=20k\)
Thay vào đề , ta có : xyz = 640
\(\Rightarrow4k\cdot8k\cdot20k=640\)
\(\Rightarrow640k^3=640\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Rightarrow x=4;y=8;z=20\)
Vậy
\(x:y:z=3:5:\left(-2\right)\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=-\dfrac{16}{4}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-4\right).3=-12\\y=\left(-4\right).5=-20\\z=\left(-4\right).\left(-2\right)=8\end{matrix}\right.\)