Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
\(A=\left|x-2013\right|+\left|2014-x\right|>=\left|x-2013+2014-x\right|=1\)
Dấu = xảy ra khi 2013<=x<=2014
\(B=\left|x-123\right|+\left|456-x\right|>=\left|x-123+456-x\right|=333\)
Dấu = xảy ra khi 123<=x<=456
b: \(\left|x\right|+2004>=2004\)
=>A<=2013/2004
Dấu = xảy ra khi x=0
\(B=\dfrac{\left|x\right|+2002+1}{\left|x\right|+2002}=1+\dfrac{1}{\left|x\right|+2002}< =1+\dfrac{1}{2002}=\dfrac{2003}{2002}\)
Dấu = xảy ra khi x=0
ĐKXĐ: \(-3\le x\le5\)
\(y^2=8-2\sqrt{\left(x+3\right)\left(5-x\right)}\le8\)
\(\Rightarrow-2\sqrt{2}\le y\le2\sqrt{2}\)
\(y_{max}=2\sqrt{2}\) khi \(x=5\)
\(y_{min}=-2\sqrt{2}\) khi \(x=-3\)
Áp dụng BĐT: \(\dfrac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\dfrac{a+b}{2}}\) có:
\(\dfrac{\sqrt{2014}+\sqrt{2012}}{2}< \sqrt{\dfrac{2014+2012}{2}}\)
\(\Leftrightarrow\dfrac{\sqrt{2014}+\sqrt{2012}}{2}< \sqrt{\dfrac{4026}{2}}\)
\(\Leftrightarrow\sqrt{2014}+\sqrt{2012}< 2\sqrt{2013}\)
\(VT^2=\left(\sqrt{2014}+\sqrt{2012}\right)^2\le\left(1^2+1^2\right)\left(2014+2012\right)=8052\)
\(VT\le\sqrt{8052}=2\sqrt{2013}=VP\)
Tuy nhiên,dấu "=" không xảy ra( vì \(\sqrt{2014}\ne\sqrt{2012}\))
Nên \(VT< VP\)
p/s:Ủng hộ cách khác:v
\(\sqrt{2013-\sqrt{x-1}}=2014-x\)
⇔ \(\left\{{}\begin{matrix}\sqrt{\dfrac{2014-x}{2013+\sqrt{x-1}}}=2014-x\\x\ge1\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\sqrt{2014-x}.\left(\dfrac{1}{2013+\sqrt{x-1}}-1\right)=0\\x\in\left[1;2014\right]\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left[{}\begin{matrix}\dfrac{1}{2013+\sqrt{x-1}}=1\\x=2014\end{matrix}\right.\\x\in\left[1;2014\right]\end{matrix}\right.\)
⇔ x = 2014
Vậy S = {2014}