K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2021

giúp mình với nhé!

4 tháng 11 2018

từ giả thiết : xy + yz = 8 ; yz + zx = 9 ; zx + xy = 5

=> xy + yz + zx = 11

=> xy = 2 ; yz = 6 ; zx = 3

=>( xyz)2 = 36     =>  xyz =  \(\pm\)6

+ nếu xyz = 6 thì :        x = 1 ; y = 2; z = 3

+ nếu xyz = -6 thì :       x = -1 ; y = -2 ; z = -3

4 tháng 11 2018

\(xy+yz=8;yz+zx=9;zx+xy=5\)

\(\Rightarrow xy+yz+yz+zx+zx+xy=8+9+5\)

\(\Leftrightarrow2xy+2yz+2xz=22\)

\(\Leftrightarrow2\left(xy+yz+xz\right)=22\)

\(\Leftrightarrow xy+yz+xz=11\)

\(\Rightarrow\hept{\begin{cases}xz=11-8\\xy=11-9\\yz=11-5\end{cases}\Rightarrow\hept{\begin{cases}xz=3\\xy=2\\yz=6\end{cases}}}\Rightarrow xz\cdot xy\cdot yz=3\cdot2\cdot6=36\)

\(\Leftrightarrow\left(xyz\right)^2=36=\left(\pm6\right)^2\)

TH1: \(xyz=6\)

\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=6:3\\z=6:2\\x=6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=2\\z=3\\x=1\end{cases}}}\)

TH2: \(xyz=-6\)

\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=-6:3\\z=-6:2\\x=-6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=-2\\z=-3\\x=-1\end{cases}}}\)

Vậy 2 tập nghiệm của x, y, z là (1;2;3) và (-1;-2;-3)

21 tháng 11 2018

áp dụng tính chất dãy tỉ số bằng nhau mà làm

22 tháng 11 2018

theo tính chất dãy tỉ số = ta có ;

xy\4+yz/6+zx/10=xy+yz+zx/4+6+10=60/16=3,75

do đó: xy/4=3,75 suy ra xy=3,75.4=15

         yz/6=3,75 suy ra yz=3,75.6=22,5

         zx/10=3,75 suy ra zx=3,75.10=37,5

13 tháng 7 2017

Ta có :

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}=\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(x+z\right)}\)

\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)

Từ \(z\left(x+y\right)=x\left(y+z\right)\Leftrightarrow xz+yz=xy+xz\Leftrightarrow yz=xy\Rightarrow x=z\) (1)

Từ \(x\left(y+z\right)=y\left(x+z\right)\Leftrightarrow xy+xz=xy+yz\Leftrightarrow xz=yz\Rightarrow x=y\) (2)

Từ \(z\left(x+y\right)=y\left(z+x\right)\Leftrightarrow xz+yz=yz+xy\Leftrightarrow xz=xy\Rightarrow z=y\) (3)

Từ (1) ; (2) ; (3) \(\Rightarrow x=y=z\) (đpcm)

21 tháng 3 2020

Do \(xyz=1\)nên:

\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xz+z+1}=1\)

\(=\frac{1}{xy+x+1}+\frac{x}{xyz+xy+z}+\frac{xy}{x^2yz+xyz+xy}\)

\(=\frac{1}{xy+x+1}+\frac{x}{1+xy+x}+\frac{xy}{x+1+y}=1\)

=> ĐPCM

22 tháng 3 2020

\(xyz=1\) nên tồn tại \(x=\frac{a}{b};y=\frac{b}{c};z=\frac{c}{a}\)

\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{zx+z+1}\)

\(=\frac{1}{\frac{a}{b}\cdot\frac{b}{c}+\frac{a}{b}+1}+\frac{1}{\frac{b}{c}\cdot\frac{c}{a}+\frac{b}{c}+1}+\frac{1}{\frac{c}{a}\cdot\frac{a}{b}+\frac{c}{a}+1}\)

\(=\frac{1}{\frac{a}{c}+\frac{a}{b}+1}+\frac{1}{\frac{b}{a}+\frac{b}{c}+1}+\frac{1}{\frac{c}{b}+\frac{c}{a}+1}\)

\(=\frac{bc}{ab+ac+cb}+\frac{ac}{bc+ab+ac}+\frac{ab}{ac+bc+ab}\)

\(=\frac{ab+bc+ca}{ab+bc+ca}=1\)

8 tháng 2 2020

Bạn tham khảo tại đây:

Câu hỏi của Hacker Chuyên Nghiệp - Toán lớp 7 - Học toán với OnlineMath

20 tháng 11 2021

\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)

\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)

20 tháng 11 2021

Cảm ơn anh rất nhìu

19 tháng 11 2018

\(\frac{xy}{2}=\frac{yz}{4,5}=\frac{xz}{8}=\frac{xy+yz+xz}{2+4,5+8}=\frac{29}{14,5}=2\)

\(\Rightarrow xy=4,yz=9,xz=16\)

\(\Rightarrow\left(xy\right).\left(yz\right).\left(xz\right)=4.9.16\)

\(\Rightarrow\left(xyz\right)^2=2^2.3^2.4^2\Rightarrow\left(xyz\right)^2=24^2\Rightarrow\orbr{\begin{cases}xyz=24\\xyz=-24\end{cases}}\)

Nếu xyz = 24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(yz\right)=24:9=\frac{8}{3}\\y=\left(xyz\right):\left(xz\right)=24:16=\frac{3}{2}\\z=\left(xyz\right):\left(xy\right)=24:4=6\end{cases}}\)

Nếu xyz = -24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(xz\right)=-24:9=-\frac{8}{3}\\y=-24:16=-\frac{3}{2}\\z=-24:4=-6\end{cases}}\)