K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

áp dụng tính chất dãy tỉ số bằng nhau mà làm

22 tháng 11 2018

theo tính chất dãy tỉ số = ta có ;

xy\4+yz/6+zx/10=xy+yz+zx/4+6+10=60/16=3,75

do đó: xy/4=3,75 suy ra xy=3,75.4=15

         yz/6=3,75 suy ra yz=3,75.6=22,5

         zx/10=3,75 suy ra zx=3,75.10=37,5

10 tháng 10 2018

đé* biết ok

19 tháng 11 2018

\(\frac{xy}{2}=\frac{yz}{4,5}=\frac{xz}{8}=\frac{xy+yz+xz}{2+4,5+8}=\frac{29}{14,5}=2\)

\(\Rightarrow xy=4,yz=9,xz=16\)

\(\Rightarrow\left(xy\right).\left(yz\right).\left(xz\right)=4.9.16\)

\(\Rightarrow\left(xyz\right)^2=2^2.3^2.4^2\Rightarrow\left(xyz\right)^2=24^2\Rightarrow\orbr{\begin{cases}xyz=24\\xyz=-24\end{cases}}\)

Nếu xyz = 24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(yz\right)=24:9=\frac{8}{3}\\y=\left(xyz\right):\left(xz\right)=24:16=\frac{3}{2}\\z=\left(xyz\right):\left(xy\right)=24:4=6\end{cases}}\)

Nếu xyz = -24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(xz\right)=-24:9=-\frac{8}{3}\\y=-24:16=-\frac{3}{2}\\z=-24:4=-6\end{cases}}\)

24 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có 

\(\frac{xy+1}{9}=\frac{xy+1+yz+2+xz+3}{9+15+27}=\frac{\left(xy+yz+xz\right)+6}{51}=\frac{11+6}{51}=\frac{1}{3}\)

\(\Leftrightarrow\frac{xy+1}{9}=\frac{1}{3}\Leftrightarrow3xy+3=9\Leftrightarrow xy=2\left(1\right)\)

\(\Leftrightarrow\frac{yz+2}{15}=\frac{1}{3}\Leftrightarrow3yz+6=15\Leftrightarrow yz=3\left(2\right)\)

\(\Leftrightarrow\frac{xz+3}{27}=\frac{1}{3}\Leftrightarrow3xz+9=27\Leftrightarrow xz=6\left(3\right)\)

Kết hợp (1);(2);(3) ta có \(y=\frac{2}{x}\Rightarrow\frac{2}{x}.z=3\Rightarrow2z=3x\Rightarrow x.\frac{3x}{2}=6\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

Với \(x=2\Rightarrow y=1;z=3\)

Với \(x=-2\Rightarrow y=-1;z=-3\)

Vậy ....

26 tháng 7 2018

giỏi quá 

22 tháng 2 2019

Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0

Suy ra x;y;z khác 0

Đặt \(2=a;4=b;6=c\) khi đó ta có:

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)

Mà \(x;y;z\ne0\) suy ra:

\(ayz+bxz=bxz+xcy=cxy+ayz\)

\(\Rightarrow az=cx;bx=ay\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Rightarrow x=ak;y=bk;z=ck\)

Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{k}{2}=k^2\)

\(\Rightarrow k=\frac{1}{2}\)

\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)

Thay số vào,ta được:

\(x=1;y=2;z=3\)

15 tháng 3 2019

\(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{xz}{6x+2z}\)(4z chứ 4x là sai đề rồi bạn)

\(\Leftrightarrow\frac{x}{2}+\frac{y}{4}=\frac{y}{4}+\frac{z}{6}=\frac{z}{6}+\frac{x}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)tự làm tiếp :))

17 tháng 3 2022

ảo

 

27 tháng 9 2019

sorry sai đề :v

Sửa \(\frac{xy}{2y+4x}+\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)

27 tháng 9 2019

Ta có :

 \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)

\(\Leftrightarrow\frac{xyz}{2yz+4xz}=\frac{xyz}{4xz+6xy}=\frac{xyz}{6xy+2yz}\)

\(\Rightarrow2yz+4xz=4xz+6xy=6xy+2yz\)

\(\Rightarrow\hept{\begin{cases}2yz=6xy\\4xz=2yz\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3x\\y=2x\end{cases}}\)

\(\rightarrow x:y:z=1:2:3\frac{xy}{2y+4x}\)  \(=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{2x^2}{4y+4x}=\frac{x}{4}.\frac{x^2+y^2+z^2}{2^2+4^2+6^2}=\frac{14x^2}{56}=\frac{x^2}{4}\rightarrow\frac{x^2}{4}=\frac{x}{4}\)

\(\Rightarrow\frac{x^2-x}{4}=0\Leftrightarrow x-1=0\left(x\ne0\right)\)

\(\Rightarrow x=1\rightarrow x=1;y=2;z=3\)

Làm thử thôi sai thì thôi nha !