K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1

 TH1: Nếu con gà chạy sang chuồng 2 là một con gà mái thì lúc này chuồng 2 có 7 con gà trống và 4 con gà mái \(\Rightarrow\) P(gà trống) \(=\dfrac{7}{11}\)

 TH2: Nếu con gà chạy sang chuồng 2 là một con gà trống thì lúc này chuồng 2 có 8 con gà trống và 3 con gà mái \(\Rightarrow\) P(gà trống) \(=\dfrac{8}{11}\)

 Bởi chuồng 1 có số lượng gà trống và gà mái bằng nhau nên xác suất để 1 con gà trống hay 1 con gà mái chạy từ chuồng 1 sang chuồng 2 là như nhau.

 \(\Rightarrow\) P(gà trống) \(=\dfrac{\dfrac{7}{11}+\dfrac{8}{11}}{2}=\dfrac{15}{22}\)

2) Bạn bổ sung thêm đề bài nhé.

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

Nếu E xảy ra từ là bắt được con gà trống từ chuồng I. Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên chuồng II có 12 con gà mái và 8 con gà trống. Vậy \(P\left(F\right)=\dfrac{12}{20}=\dfrac{3}{5}\).

Nếu E không xảy ra từ là bắt được con gà mái từ chuồng I. Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên chuồng II có 11 con gà mái và 9 con gà trống. Vậy \(P\left(F\right)=\dfrac{11}{20}\).

Như vậy, xác suất của biến cố F đã thay đổi phụ thuộc vào biến cố E xảy ra hay không xảy ra. Do đó hai biến cố E và F không độc lập.

TH1: biến cố E xảy ra

=>Bắt được 1 con gà trống trong chuồng I

Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên nên chuồng II có 12 con gà mái và 8 con gà trống

=>P(E)=12/20=3/5

TH2: Biến cố E không xảy ra 

=>bắt được một con gà mái trong chuồng I

Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên nên chuồng II có 11 con gà mái và 9 con gà trống

=>P(E)=11/20

Vì biến cố E xảy ra như thế nào thì F cũng sẽ bị ảnh hưởng theo nên biến cố E và biến cố F là hai biến cố không độc lập

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Nếu A xảy ra tức là bắt được con thỏ trắng từ chuồng I. Vậy \(P\left( B \right) = \frac{7}{{10}}\)

Nếu A không xảy ra tức là bắt được con thỏ đen từ chuồng I. Vậy \(P\left( B \right) = \frac{7}{{10}}\)

Như vậy xác suất xảy ra của biến cố B không thay đổi bởi việc xảy ra hay không xảy ra của biến cố A.

Vì từ mỗi chuống bắt một con thỏ nên \(P\left( A \right) = \frac{{10}}{{15}} = \frac{2}{3}\) dù biến cố B xảy ra hay không xảy ra.

Vậy hai biến cố A và B độc lập.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 13 quả bóng có \({C}_{13}^3 = 286\) cách.

\( \Rightarrow n\left( \Omega \right) = 286\)

a) Gọi \(A\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu xanh”, \(B\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu đỏ”, \(C\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu vàng”

Vậy \(A \cup B \cup C\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu”

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^3 = 10\) cách.

\( \Rightarrow n\left( A \right) = 10 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega\right)}} = \frac{{10}}{{286}} = \frac{5}{{143}}\)

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 6 quả bóng đỏ có \({C}_6^3 = 20\) cách.

\( \Rightarrow n\left( B \right) = 20 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{20}}{{286}} = \frac{{10}}{{143}}\)

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 2 quả bóng vàng có 0 cách.

\( \Rightarrow n\left( C \right) = 0 \Rightarrow P\left( C \right) = 0\)

\( \Rightarrow P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) = \frac{{15}}{{243}}\)

b) Gọi \(D\) là biến cố “Có đúng 2 quả bóng xanh trong 3 quả bóng lấy ra”

Vậy \(A \cup D\) là biến cố “Có ít nhất 2 quả bóng xanh trong 3 quả bóng lấy ra”

Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^2 = 10\) cách.

Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 8 quả bóng đỏ hoặc vàng có \({C}_8^1 = 8\) cách.

\( \Rightarrow n\left( D \right) = 10.8 = 80 \Rightarrow P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{80}}{{286}} = \frac{{40}}{{143}} \Rightarrow P\left( {A \cup D} \right) = P\left( A \right) + P\left( D \right) = \frac{{45}}{{143}}\)

14 tháng 5 2017

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

YCĐB tương đương với việc lấy ngẫu nhiên 2 cầu từ hộp 1 và 1 cầu từ hộp 2 đều trắng.

Xác suất lấy 2 cầu trắng từ hộp 1 là: $\frac{C^2_{10}}{C^2_{15}}=\frac{3}{7}$

Xác suất lấy 1 cầu trắng từ hộp 2 là: $\frac{C^1_7}{C^1_{15}}=\frac{7}{15}$

Xác suất lấy ngẫu nhiên 2 cầu từ hộp 1 và 1 cầu từ hộp 2 đều trắng là: $\frac{3}{7}.\frac{7}{15}=\frac{1}{5}$

22 tháng 9 2023

tham khảo

A là biến cố "Hai quả bóng lấy ra đều có màu xanh", \(P\left(A\right)=\dfrac{C^2_5}{C^2_9}\)

B là biến cố "Hai quả bóng lấy ra đều có màu đỏ", \(P\left(B\right)=\dfrac{C^2_4}{C^2_9}\)

\(A\cup B\)  là biến cố "Hai bóng lấy ra có cùng màu". A và B xung khắc nên:

\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)=\dfrac{4}{9}\)

\(\Rightarrow C\)

26 tháng 9 2018

Đáp án C.

Số cách lấy ngẫu nhiên 4 quả là: C 10 4  (cách)

Số cách lấy được 2 quả đỏ, 2 trắng là: C 4 2 . C 7 2  (cách)

Xác suất để lấy được đúng 2 quả đỏ là:

14 tháng 11 2022

Đáp án C.

Số cách lấy được 2 quả đỏ, 2 trắng là: C 4 2 . C 7 2  (cách)

Xác suất để lấy được đúng 2 quả đỏ là: