K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Nếu A xảy ra tức là bắt được con thỏ trắng từ chuồng I. Vậy \(P\left( B \right) = \frac{7}{{10}}\)

Nếu A không xảy ra tức là bắt được con thỏ đen từ chuồng I. Vậy \(P\left( B \right) = \frac{7}{{10}}\)

Như vậy xác suất xảy ra của biến cố B không thay đổi bởi việc xảy ra hay không xảy ra của biến cố A.

Vì từ mỗi chuống bắt một con thỏ nên \(P\left( A \right) = \frac{{10}}{{15}} = \frac{2}{3}\) dù biến cố B xảy ra hay không xảy ra.

Vậy hai biến cố A và B độc lập.

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

Nếu E xảy ra từ là bắt được con gà trống từ chuồng I. Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên chuồng II có 12 con gà mái và 8 con gà trống. Vậy \(P\left(F\right)=\dfrac{12}{20}=\dfrac{3}{5}\).

Nếu E không xảy ra từ là bắt được con gà mái từ chuồng I. Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên chuồng II có 11 con gà mái và 9 con gà trống. Vậy \(P\left(F\right)=\dfrac{11}{20}\).

Như vậy, xác suất của biến cố F đã thay đổi phụ thuộc vào biến cố E xảy ra hay không xảy ra. Do đó hai biến cố E và F không độc lập.

TH1: biến cố E xảy ra

=>Bắt được 1 con gà trống trong chuồng I

Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên nên chuồng II có 12 con gà mái và 8 con gà trống

=>P(E)=12/20=3/5

TH2: Biến cố E không xảy ra 

=>bắt được một con gà mái trong chuồng I

Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên nên chuồng II có 11 con gà mái và 9 con gà trống

=>P(E)=11/20

Vì biến cố E xảy ra như thế nào thì F cũng sẽ bị ảnh hưởng theo nên biến cố E và biến cố F là hai biến cố không độc lập

NV
15 tháng 2 2020

Có 2 hướng: tính xác suất bắt được 3 con trắng sau 5,6,7 lần bắt (3 trường hợp) hoặc tính xác suất bắt được 3 con trắng sau 3,4 lần bắt (2 trường hợp) rồi lấy 1 trừ đi kiểu phần bù.

- Bắt được 3 con trắng ngay sau 3 lần bắt đầu tiên: chọn 3 con bất kì từ 7 con có \(A_7^3\) cách chọn, chọn ra 3 con trắng từ 3 con trắng có \(A_3^3\) cách \(\Rightarrow P_1=\frac{A_3^3}{A_7^3}=\frac{1}{35}\)

- Bắt 3 con trắng sau 4 lượt, trong đó lượt 4 là con trắng, 3 lượt còn lại có 2 con trắng: chọn 4 con từ 7 con có \(A_7^4\) cách, chọn 1 con trắng từ 3 con trắng có \(P_3^1\) cách (lượt bắt cuối), chọn 2 con trắng và 1 con đen từ 6 con còn lại có \(C_2^2C_4^1.3!\Rightarrow P_2=\frac{P_3^1.C_3^2.C_4^1.3!}{A_7^4}=\frac{3}{35}\)

\(\Rightarrow P=1-\left(P_1+P_2\right)=\frac{31}{35}\)

20 tháng 12 2018

Em có sách lí giải về khoa học. Đáp án 144 cặp

20 tháng 12 2018

bài này liên quan đến FIBONACY nhỉ anh Mysterious Person

15 tháng 1

 TH1: Nếu con gà chạy sang chuồng 2 là một con gà mái thì lúc này chuồng 2 có 7 con gà trống và 4 con gà mái \(\Rightarrow\) P(gà trống) \(=\dfrac{7}{11}\)

 TH2: Nếu con gà chạy sang chuồng 2 là một con gà trống thì lúc này chuồng 2 có 8 con gà trống và 3 con gà mái \(\Rightarrow\) P(gà trống) \(=\dfrac{8}{11}\)

 Bởi chuồng 1 có số lượng gà trống và gà mái bằng nhau nên xác suất để 1 con gà trống hay 1 con gà mái chạy từ chuồng 1 sang chuồng 2 là như nhau.

 \(\Rightarrow\) P(gà trống) \(=\dfrac{\dfrac{7}{11}+\dfrac{8}{11}}{2}=\dfrac{15}{22}\)

2) Bạn bổ sung thêm đề bài nhé.

19 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Không gian mẫu là kết quả của việc lấy ngẫu nhiên 1 quả cầu ở hộp thứ nhất và một quả cầu ở hộp thứ hai

+ Có 10 cách lấy 1 quả cầu bất kì ở hộp 1 và có 10 cách lấy 1 quả cầu bất kì ở hộp 2. Nên số phần tử của không gian mẫu là;

⇒ n(Ω) = 10.10 = 100.

A: “ Quả cầu lấy từ hộp thứ nhất trắng”

⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 10 cách lấy quả cầu ở hộp B

⇒ n(A) = 6.10 = 60.

B: “Quả cầu lấy từ hộp thứ hai trắng”

⇒ Có 4 cách lấy quả cầu màu trắng ở hộp B và 10 cách lấy quả cầu ở hộp A

⇒ n(B) = 4.10 = 40.

A.B: “Cả hai quả cầu lấy ra đều trắng”

⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 4 cách lấy quả cầu màu trắng ở hộp B

⇒ n(A.B) = 6.4 = 24.

Giải bài tập Đại số 11 | Để học tốt Toán 11

hay P(A.B) = P(A).P(B)

⇒ A và B là biến cố độc lập.

 

b) Gọi C: “Hai quả cầu lấy ra cùng màu”.

Ta có: A : “Quả cầu lấy ra từ hộp thứ nhất màu đen”

B : “ Quả cầu lấy ra từ hộp thứ hai màu đen”

A.B : “Cả hai quả cầu lấy ra đều màu đen”

Nhận thấy A.B và A.B xung khắc (Vì không thể cùng lúc xảy ra hai trường hợp 2 quả cầu lấy ra cùng trắng và cùng đen)

Và C=(A.B)∪(A.B)

Giải bài tập Đại số 11 | Để học tốt Toán 11

c) C : “Hai quả cầu lấy ra khác màu”

⇒ P(C )=1-P(C)=1-0,48=0,52

9 tháng 4 2017

Phép thử T được xét là: "Từ mỗi hộp lấy ngẫu nhiên một quả cầu".

Mỗi một kết quả có thể có của phép thư T gồm hai thành phần là: 1 quả cầu của hộp thứ nhất và 1 quả cầu của hộp thứ 2.

Có 10 cách để lấy ra 1 quả cầu ở hộp thứ nhất và có 10 cách để lấy 1 quả cầu ở hộp thứ 2. Từ đó, vận dụng quy tắc nhân ta tìm được số các cách để lập được một kết quả có thể có của hai phép thử T là 10 . 10 = 100. Suy ra số các kết quả có thể có của phép thử T là n(Ω) = 100.

Vì lấy ngầu nhiên nên các kết quả có thể có của phép thử T là đồng khả năng.

Xét biến cố A: "Quả cầu lấy từ hộp thứ nhất có màu trắng".

Mỗi một kết quả có thể có thuận lợi cho A gồm 2 thành phần là: 1 quả cầu trắng ở hợp thứ nhất và 1 quả cầu (nào đó) ở hộp thứ 2. Vận dụng quy tắc nhân ta tìm được số các kết quả có thể có thuận lợi cho A là: n(A) = 6 . 10 = 60.

Suy ra P(A) = = 0,6.

Xét biến cố B: "Quả cầu lấy từ hộp thứ hai có màu trắng".

Tương tự như trên ta tìm được số các kết quả có thể thuận lợi cho B là:

n(B) = 10 . 4 = 40.

Từ đó suy ra P(B) = = 0,4.

a) Ta có A . B là biến cố: "Lấy được 1 cầu trắng ở hộp thứ nhất và 1 cầu trắng ở hộp thứ hai". Vận dụng quy tắc nhân ta tìm được số các kết quả có thể có thuận lợi cho A . B là:

6 . 4 =24. Suy ra:

P(A . B) = = 0,24 = 0,6 . 0,4 = P(A) . P(B).

Như vậy, ta có P(A . B) = P(A) . P(B). Suy ra A và B là hai biến cố độc lập với nhau.

b) Gọi C là biến cố: "Lấy được hai quả cầu cùng màu". Ta có

C = A . B + . .

Trong đó = "Quả cầu lấy từ hộp thứ nhất có màu đen" và P() = 0,4.

: "Quả cầu lấy từ hộp thứ hai có màu đen" và P() = 0,6.

Và ta có A . B và . là hai biến cố xung khắc với nhau.

A và B độc lập với nhau, nên cũng độc lập với nhau.

Qua trên suy ra;

P(C) = P(A . B + . ) = P(A . B) + P( . ) = P(A) . P(B) + P() . P()

= 0,6 . 0,4 + 0,4 . 0,6 = 0,48.

c) Gọi D là biến cố: "Lấy được hai quả cầu khác màu". Ta có

D = => P(D) = 1 - P(C) = 1 - 0,48 = 0,52.


1. Dành cho "thấp thủ" "Sói phát hiện Thỏ chạy cách nó 10m bèn chạy theo để bắt. Bước chạy của Sói dài hơn của Thỏ, quảng đường nó chạy với 13 bước bằng quảng đường Thỏ chạy 45 bước. Bù lại Thỏ lại nhanh hơn, thời gian để Sói chạy được 2 bước thì Thỏ chạy được 5 bước. Như Vậy, a.) Sói có bắt được Thỏ hay không ? b.) Nếu muốn đuổi kịp Thỏ thì Sói phải chạy một...
Đọc tiếp

1. Dành cho "thấp thủ"

"Sói phát hiện Thỏ chạy cách nó 10m bèn chạy theo để bắt. Bước chạy của Sói dài hơn của Thỏ, quảng đường nó chạy với 13 bước bằng quảng đường Thỏ chạy 45 bước. Bù lại Thỏ lại nhanh hơn, thời gian để Sói chạy được 2 bước thì Thỏ chạy được 5 bước. Như Vậy,
a.) Sói có bắt được Thỏ hay không ?
b.) Nếu muốn đuổi kịp Thỏ thì Sói phải chạy một quảng đường ít nhất là bao nhiêu mét ?"

2. Danh cho "cao thủ"

#################################################
"Sói phát hiện Thỏ chạy cách nó 100m bèn chạy theo để bắt. Bước chạy của Sói dài hơn của Thỏ, quảng đường nó chạy với 21 bước bằng quảng đường Thỏ chạy 100 bước. Bù lại Thỏ lại nhanh hơn, thời gian để Sói chạy được 7 bước thì Thỏ chạy được 10 bước. Như Vậy,
a.) Sói có bắt được Thỏ hay không ?
b.) Nếu muốn đuổi kịp Thỏ thì Sói phải chạy một quảng đường ít nhất là bao nhiêu mét ?"
##################################################

0
1 tháng 2 2018

Phương pháp: Chia đường đi của thỏ thành 2 giai đoạn, tính số phần tử của không gian mẫu và số phần tử của biến cố A « thỏ đến được vị trí B » .

Cách giải :

Từ A đến B nhất định phải đi qua D, ta chia làm 2 giai đoạn  A → D và  D → B

Từ A → D có 9 cách.

Từ D → B có 6 cách tính cả đi qua C và có 3 cách không đi qua C.

Không gian mẫu  n Ω   =   9 . 6 = 54

Gọi A là biến cố « thỏ đến được vị trí B » thì nA = 9.3 = 27

Vậy

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \(P\left( A \right) = \frac{6}{{10}} = \frac{3}{5};P\left( B \right) = \frac{7}{8}\)

Không gian mẫu là tập hợp số cách Bạn Long lấy được một quả bóng từ hộp I và Bạn Hải lấy một quả bóng từ hộp II do đó \(n\left( \Omega  \right) = 10.8 = 80\)

C: “Bạn Long lấy được quả màu trắng và bạn Hải lấy được quả màu đen”

Công đoạn 1: Bạn Long lấy được quả màu trắng có 6 cách

Công đoạn 2. Bạn Hải lấy được quả màu đen có 7 cách

Theo quy tắc nhân, tập hợp C có 6.7 = 42 (phần tử)

\(P\left( C \right) = P\left( {AB} \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{{42}}{{80}} = \frac{{21}}{{40}}\)

b) \(P\left( A \right).P\left( B \right) = \frac{3}{5}.\frac{7}{8} = \frac{{21}}{{40}}\)

Vậy P(AB) = P(A).P(B).