Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=111...1=\frac{10^{2n}-1}{9}=\frac{10^{2n}}{9}-\frac{1}{9}\)
\(b=222...2=\frac{2\left(10^n-1\right)}{9}=\frac{2.10^n}{9}-\frac{2}{9}\)
\(a-b=\frac{10^{2n}}{9}-\frac{1}{9}-\frac{2.10^n}{9}+\frac{2}{9}=\left(\frac{10^n}{3}\right)^2-2.\frac{10^n}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\)
\(=\left(\frac{10^n}{3}-\frac{1}{3}\right)^2\) Là 1 số chính phương
Ta có:A-B=111...111111-2 x 111...111111
(100 chữ số 1) (50 chữ số 2)
=1111...1111 x (1000...0001 - 2)
(50 chữ số 1) (có 51 chữ số trong đó có 49 chữ số 0)
=1111...1111 x 9999...9999
(50 chữ số 1) (50 chữ số 9)
=1111...1111 x 9 x 1111...1111
(50 chữ số 1) (50 chữ số 1)
=(1111...1111)^2 x 3^2
=(1111...1111 x 3)^2
Vậy hiệu A-B là một số chính phương
TICK MIK NHÉ PẠN
Tinh số tự nhiên A la:
1 x 100=100
Tính số tự nhiên B là:
2 x 50=100
Vì A và B là:
A-B=100-100=0
=>A-B là số chính phương
Đặt 1111....1 ( 2015 số 1 ) = a
=> A = a . 10^2015 +a = a.(9a+1)+a = 9a^2+2a
B = 2a
=> A - B = 9a^2 + 2a - 2a = 9a^2 = (3a)^2 là 1 số chính phương
=> ĐPCM
k mk nha
Đặt 1111....1 ( 2015 số 1 ) = a
=> A = a . 10^2015 +a = a.(9a+1)+a = 9a^2+2a
B = 2a
=> A - B = 9a^2 + 2a - 2a = 9a^2 = (3a)^2 là 1 số chính phương
=> ĐPCM
k mk nha $_$
Mình làm thế này:
Ta có A=11...11(100 số 1)
⇔A=1...10...0 + 1...1(50 số 1 vào 50 số 0)
⇔A=1....1.10^50+1....1(50 số 1)
Đặt 50 lần số là a, ta có A=a.10^a+a
và B=2a
Vậy A-B=a.10^a-2a+a=a.10^a-a=a.(9a+1)-a=9a²+...
Vậy A-B là 1 số chính phương
Chúc bạn học tốt
ta có:tổng của 100 chữ số 1 là 100=A
tổng của50 chữ số 2 là100=B
=>A-B=100-100=0
vậy A-B là 1 scp
Ta có: A - B = 1111....1111 - 2 x 1111...111
(100 csố 1) (50 csố 1)
= 1111.....1111 x (1000...0001 - 2)
(50 chữ số 1) (có 51 csố trong đó có 49 csố 0)
= 1111.....11111 x 9999....9999
(50 csố 1) (50 csố 9)
= 1111...1111 x 9 x 1111....1111
(50csố1) (50csố1)
= (1111....1111)^2 x 3^2
= (1111.....1111 x 3)^2
Vậy hiệu A - B là một số chính phương
Lời giải:
\(a=\underbrace{111....1}_{2n}; b=\underbrace{22....2}_{n}\)
Đặt \(\underbrace{11...11}_{n}=a\Rightarrow 10^n=9a+1\)
Khi đó:
\(a-b=\underbrace{11...1}_{n}\underbrace{000...0}_{n}+\underbrace{11...1}_{n}-2.\underbrace{11...1}_{n}\)
\(=a(9a+1)+a-2a=9a^2=(3a)^2\) là số chính phương. Ta có đpcm.