Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
\(a:15\) dư 13 \(\Rightarrow a=15k+13\left(k\in N\text{ }\right)\)
\(b:12\) dư 8 \(\Rightarrow b=12k+8\left(k\in N\right)\)
\(\Rightarrow a+b=15k+12k+13+8=27k+21=3\left(9k+7\right)⋮3\)
a)tìm số tự nhiên a biết khi chia a cho 4 thì được thương là 14 và có số dư là 12
⇒ a = 4.14+12 = 68
b) Tìm số tự nhiên a, biết khi chia 58 cho a thì được thương là 4 và số dư là 2
⇒a=(58-2):4=56:4=14
Vì a:n bằng 3 dư 2=>n=(a-2):3(1)
Vì b:n bằng 3 dư 4=>n=(b-4):3(2)
Tư (1) và (2) suy ra
(a-2):3+(b-4):3=2n
(a+b-2-4):3=2n
a+b-6=6n
a{=b=6n+6=>a+bchia hết cho 3(đpcm)