K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2A=2^1+2^2+...+2^{20}\)

nên \(A=2^{20}-1\)

Vậy: A và B là hai số tự nhiên liên tiếp

8 tháng 12 2021

\(2A=2+2^2+2^3+...+2^{20}\\ \Leftrightarrow2A-A=2+2^2+...+2^{20}-1-2-2^2-...-2^{19}\\ \Leftrightarrow A=2^{20}-1\)

Mà \(B=2^{20}\) nên ta có đpcm

12 tháng 8 2021

B = 2^2023 chứ nhỉ

A = 2^0 + 2^1 + 2^2 + ... + 2^2022

2A = 2^1 + 2^2 + 2^3 + ... + 2^2023

=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)

=> A = 2^2023 - 2^0

=> A = 2^2023 - 1

=> A và B là 2 stn liên tiếp

12 tháng 8 2021

Ta có:

A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021

⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022

⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)

⇔A=22022−20⇔A=22022−20

⇔A=22022−1⇔A=22022−1

Mà B=22022⇒B=A+1B=22022⇒B=A+1

⇒A⇒A và BB là 22 số tự nhiên liên tiếp. 

    chúc học tốt.

21 tháng 12 2023

Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)

\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)

=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)

=>\(3A=2^{2024}-1\)

mà \(2\cdot B=2^{2024}\)

nên 3A và 2B là hai số tự nhiên liên tiếp

25 tháng 12 2022

Ta có \(4A=2^2+2^4+2^6+2^8...+2^{2024}\)

Từ đó \(3A=4A-A=\left(2^2+2^4+...+2^{2024}\right)-\left(1+2^2+...+2^{2022}\right)\)

\(=2^{2024}-1\)

Mà \(2B=2^{2024}\)

Từ đó dễ dàng suy ra được \(3A\) và \(2B\) là 2 số liên tiếp.
 

25 tháng 12 2022

Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?

7 tháng 12 2020

a/ \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}.\)

\(2n+7⋮n+1\) khi \(5⋮n+1\) hay n+1 là USC của 5 => n+1={-5;-1;1;5} => n={-6;-2;0;4}

b/

\(2A=2+2^2+2^3+2^4+...2^{2019}\)

\(\Rightarrow A=2A-A=2^{2019}-1\)

=> A, B là 2 số tự nhiên liên tiếp

23 tháng 8 2016

\(2A=2^1+2^2+2^3+2^4+...+2^{2010}.\)

\(A=2A-A=2^{2010}-2^0=2^{2010}-1\)

=> A và B là 2 số tự nhiên liên tiếp

23 tháng 8 2016

Ta có: A=1+2+22+...+22009

=>2A=2+22+23+....+22010

=>2A-A=A=(2+22+23+...+22010)-(1+2+22+...+22009)

=>A=22010-1

=>A và B là 2 số tự nhiên liên tiếp (đpcm)

19 tháng 10 2020

\(A=5^0+5^1+5^2+5^3+......+5^{2020}\)

\(\Rightarrow5A=5^1+5^2+5^3+5^4+.......+5^{2021}\)

\(\Rightarrow5A-A=5^{2021}-5^0\)

\(\Rightarrow4A=5^{2021}-1\)

Vì \(5^{2021}-1\)và \(5^{2020}\)là 2 số tự nhiên liên tiếp

\(\Rightarrow\)\(4A\)và \(B\)là 2 số tự nhiên liên tiếp ( đpcm )

19 tháng 10 2020

\(A=5^0+5^1+5^2+5^3+...+5^{2020}\)

\(5A=5.\left(5^0+5^1+5^2+5^3+...+5^{2020}\right)\)

\(=5^1+5^2+5^3+5^4+...+5^{2021}\)

\(5A-A=\left(5^1+5^2+5^3+5^4+...+5^{2021}\right)-\left(5^0+5^1+5^2+5^3+...+5^{2020}\right)\)

\(4A=5^{2021}-5^0\)

\(=5^{2021}-1\)

mà \(B=5^{2021}\)

\(\Rightarrow\)4A và B là 2 số tự nhiên liên tiếp

24 tháng 8 2018

\(A=2+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)

\(A=2^{100}-2\)

\(B=2^{101}\)   là số chẵn và B hơn A 2 đơn vị

=> A và B là 2 số tự nhiên chắn liên tiếp

24 tháng 8 2018

2A=2^2+2^3+...+2^101

2A-A=(2^2+2^3+...+2^101)-(2+2^2+...+2^100)

A=2^101-2

=>A và B là 2 STN liên tiếp => đpcm

k cho mk nha

23 tháng 12 2021

đề bài sai

\(A=2^0+2^1+2^2+2^3+...+2^{19}\)

\(2A=2+2^2+2^3+2^4+...+2^{20}\)

\(A=2A-A=2^{20}-1\)

=> A và B là 2 số TN liên tiếp