Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+2^3+...+2^{1016}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2016}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
\(A=2^{2017}-1\)
\(B=2^{2017}\)
=> A và B là hai số tự nhiên liên tiếp
\(A=1+2+2^2+2^3+...+2^{2022}\)
\(2A=2+2^2+2^3+...+2^{2023}\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)
\(A=2^{2023}-1\)
Mà: \(2^{2023}-1\) và \(2^{2023}\)
Là hai số tự nhiên liên tiếp nên:
A và B là hai số tự nhiện liên tiếp
Ta có A = 1 + 2 + 22 + 23 + ... + 219
=> 2A = 2 + 22 + 23 + 24 + ... + 220
=> 2A - A = (2 + 22 + 23 + 24 + ... + 220) - (1 + 2 + 22 + 23 + ... + 219)
=> A = 220 - 1
Lại có B = 220
=> A và B là 2 số tự nhiên liên tiếp
Ta có: \(A=2^0+2^1+2^2+2^3+...+2^{19}\)
\(\Leftrightarrow2A=2^1+2^2+2^3+2^4...+2^{20}\)
\(\Leftrightarrow2A-A=\left(2^1+2^2+2^3+2^4...+2^{20}\right)-\left(2^0+2^1+2^2+2^3+...+2^{19}\right)\)
\(\Leftrightarrow A=2^{20}-1\)
Vì \(2^{20}-1\)và \(2^{20}\)là 2 STN liên tiếp
\(\Rightarrow\)\(A\)và \(B\)là 2 STN liên tiếp
Giúp mình bài này nữa với. Khó quá >^<
Học sinh lớp 6A khi chia tổ. Nếu chia 4 tổ; 5 tổ; 8 tổ đều vừa đủ. Tính số học sinh của lớp 6A. Biết rằng số h/s lớp đó có khoảng từ 35 đến 45 em.
Nhanh giúp mik với chứ chiều mình thi rồi ToT
2A=2+2^2+...+2^2019
=>A=2^2019-1
=>A và B là hai số liên tiếp
Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)
\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)
=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)
=>\(3A=2^{2024}-1\)
mà \(2\cdot B=2^{2024}\)
nên 3A và 2B là hai số tự nhiên liên tiếp
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
B = 2^2023 chứ nhỉ
A = 2^0 + 2^1 + 2^2 + ... + 2^2022
2A = 2^1 + 2^2 + 2^3 + ... + 2^2023
=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)
=> A = 2^2023 - 2^0
=> A = 2^2023 - 1
=> A và B là 2 stn liên tiếp
Ta có:
A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021
⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022
⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)
⇔A=22022−20⇔A=22022−20
⇔A=22022−1⇔A=22022−1
Mà B=22022⇒B=A+1B=22022⇒B=A+1
⇒A⇒A và BB là 22 số tự nhiên liên tiếp.
chúc học tốt.