Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2x + 1 chia hết cho y và 2y + 1 chia hết cho x
=> 2x + 1 chia hết x và 2y + 1 chia hết y
=> x = y = 1
Ta có: 2x + 1 chia hết cho y và 2y + 1 chia hết cho x
=> 2x + 1 chia hết x và 2y + 1 chia hết y
=> x = y = 1
Vì y là số nguyên, 2y-3 lẻ
=> 2y-3 thuộc tập (1; 5; -1; -5)
kẻ bảng => (x;y)=(7;2), (-1; 4), (-13;1), (-5;-1)
(x+30)x(2y-3)=10
x+30=10;2y-3=10
x=-20;2yx13
x=20;y=6/2
xy - x + 2y = 3
x(y - 1) + 2y - 2 = 3 - 2
x(y - 1) + 2(y - 1) = 1
<=> (x + 2)(y - 1) = 1
=> (x + 2)(y - 1) = 1.1 = ( - 1)(- 1)
Nếu x + 2 = 1 thì y - 1 = 1 => x = - 1 thì y = 2
Nếu x + 2 = - 1 thì y - 1 = - 1 => x = - 3 thì y = 0
Vậy x = - 1 thì y = 2; x = - 3 thì y = 0
\(x\left(y-1\right)+2y-2=3-2=1\)
\(\left(y-1\right)\left(x+2\right)=1\)
y-1={-1,1)=> y={0,2}
x+2={-1,1}=>x={-3,-1}
Từ \(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\left(1\right)\)
Và \(3y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{3}\)\(\Rightarrow\dfrac{y}{6}=\dfrac{z}{9}\left(2\right)\)
Từ (1) và (2) ta có:\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{9}\)
Đặt \(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{9}=k\Rightarrow x=4k;y=6k;z=9k\)
Khi đó \(A=\dfrac{x+y}{y+z}=\dfrac{4k+6k}{6k+9k}=\dfrac{10k}{15k}=\dfrac{10}{15}\)