Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Với $x,y$ là số nguyên thì $7-2x, y-3$ cũng là số nguyên. Mà $(7-2x)(y-3)=12$ và $7-2x$ là số lẻ nên ta xét các TH sau:
TH1:
$7-2x=1, y-3=12\Rightarrow x=3; y=15$ (tm)
TH2:
$7-2x=-1; y-3=-12\Rightarrow x=4; y=-9$ (tm)
TH3:
$7-2x=3; y-3=4\Rightarrow x=2; y=7$ (tm)
TH4:
$7-2x=-3; y-3=-4\Rightarrow x=5; y=-1$ (tm)
b.
Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=12$ và $2x-3$ là số lẻ nên ta có các TH sau:
TH1: $2x-3=1; y+1=12\Rightarrow x=2; y=11$ (tm)
TH2: $2x-3=-1; y+1=-12\Rightarrow x=1; y=-13$ (tm)
TH3: $2x-3=3; y+1=4\Rightarrow x=3; y=3$ (tm)
TH4: $2x-3=-3; y+1=-4\Rightarrow x=0; y=-5$ (tm)
Ta có:
12=1.12=2.6=3.4=4.3=6.2.12.1
và: 2x-1 là Ư lẻ của 12
=> 2x-1 E {1;3}
+) 2x-1=1=>2x=1+1=2
=>x=1
=>y+3=12=>y=9
Vậy x=1;y=9
+) 2x-1=3=>2x=3+1=4=>x=4:2=2
=> y+3=12:3=4
=>y=1
Vậy y=1;x=2
\(\Leftrightarrow2xy+2x-3y-3=12\)
\(\Leftrightarrow y\left(2x-3\right)=-\left(2x-15\right)\)
\(\Leftrightarrow y=\dfrac{-\left(2x-3\right)+12}{2x-3}=-1+\dfrac{12}{2x-3}\) (1)
Để y nguyên thì \(12⋮2x-3\Rightarrow\left(2x-3\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(\Rightarrow x=\left\{-\dfrac{9}{2};-\dfrac{3}{2};-\dfrac{1}{2};0;\dfrac{1}{2};1;2;\dfrac{5}{2};3;\dfrac{7}{2};\dfrac{9}{2};\dfrac{15}{2}\right\}\) Do x nguyên
\(\Rightarrow x=\left\{0;1;2;3\right\}\) Thay lần lượt các giá trị của x vào (1) để tìm các giá trị tương ứng của y
Rất rất nhiều nha!
Ví dụ 1 cặp:
Ta có: 3.20=60
=> 2x+1=3
=>2x=2
=>x=1 -> (1)
y-3=20
=>y=23 -> (2)
Từ (1);(2)=>Ta có trường hợp: x=1; y=23
Vì y là số nguyên, 2y-3 lẻ
=> 2y-3 thuộc tập (1; 5; -1; -5)
kẻ bảng => (x;y)=(7;2), (-1; 4), (-13;1), (-5;-1)
(x+30)x(2y-3)=10
x+30=10;2y-3=10
x=-20;2yx13
x=20;y=6/2