K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2021

a) Ta có: \(\angle DBO+\angle DFO=90+90=180\Rightarrow OBDF\) nội tiếp

Lấy I là trung điểm DO 

Vì \(\Delta DBO,\Delta DFO\) lần lượt vuông tại B và F có I là trung điểm DO

\(\Rightarrow\left\{{}\begin{matrix}BI=DI=IO\\ID=IO=IF\end{matrix}\right.\Rightarrow IB=ID=IO=IF\Rightarrow I\) là tâm của (OBDF)

b) Ta có: \(AO=\sqrt{AF^2+OF^2}=\sqrt{\dfrac{16}{9}R^2+R^2}=\dfrac{5}{3}R\)

\(\Rightarrow cosDAB=\dfrac{AF}{AO}=\dfrac{\dfrac{4}{3}R}{\dfrac{5}{3}R}=\dfrac{4}{5}\)

c) Cần chứng minh \(\dfrac{BD}{DM}-1=\dfrac{DM}{AM}\Rightarrow\dfrac{DF-DM}{DM}=\dfrac{DM}{AM}\)

\(\Rightarrow\dfrac{MF}{DM}=\dfrac{DM}{AM}\Rightarrow DM^2=MF.MA\) 

Vì \(\left\{{}\begin{matrix}MO\bot BC\\DB\bot BC\end{matrix}\right.\) \(\Rightarrow MO\parallel DB\)\(\Rightarrow\angle MOD=\angle BDO=\angle FDO\) 

\(\Rightarrow\Delta MOD\) cân tại M \(\Rightarrow MO=MD\)

mà \(MO^2=MF.MA\Rightarrow MD^2=MF.MA\)

d) MO cắt nửa đường tròn tại E

Ta có: \(tanDAB=\dfrac{FO}{AF}=\dfrac{R}{\dfrac{4}{3}R}=\dfrac{3}{4}\)

mà \(tanDAB=\dfrac{MO}{OA}\Rightarrow\dfrac{MO}{OA}=\dfrac{3}{4}\Rightarrow MO=\dfrac{3}{4}.\dfrac{5}{3}R=\dfrac{5}{4}R\)

Vì \(MO\parallel DB\) \(\Rightarrow\dfrac{MO}{DB}=\dfrac{AO}{AB}=\dfrac{\dfrac{5}{3}R}{2R}=\dfrac{5}{6}\Rightarrow DB=\dfrac{MO}{\dfrac{5}{6}}=\dfrac{\dfrac{5}{4}R}{\dfrac{5}{6}}=\dfrac{3}{2}R\)

Có DB,OM rồi thì bạn thế vào tính \(S_{OBDM}=\dfrac{1}{2}.\left(BD+OM\right).BO\)

còn diện tích quạt \(BOE=\dfrac{90}{360}.R^2\pi=\dfrac{1}{4}R^2\pi\)

\(\Rightarrow\) diện tích tứ giác OBDM nằm ngoài đường tròn \(=S_{OBDM}-S_{quatBOE}\)

bạn thế vài tính nha

PS: ý tưởng là vậy chứ bạn tính toán lại cho kĩ,chứ mình hay tính nhầm lắm

undefined

 

20 tháng 5 2022

Sao AB=2R v ạ?