Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(12a+7b=64\)
Do \(64⋮4,12a⋮4\) \(\Rightarrow7b⋮4\) mà \(\left(7,4\right)=1\)
\(\Rightarrow b⋮4\) (1)
Từ giả thiết \(\Rightarrow7b\le64\) \(\Leftrightarrow b\le9\) kết hợp với (1)
\(\Rightarrow b\in\left\{4,8\right\}\)
+) Với \(b=4\) thì : \(12a+7\cdot4=64\)
\(\Leftrightarrow12a=36\)
\(\Leftrightarrow a=3\) ( thỏa mãn )
+) Với \(b=8\) thì \(12a+7\cdot8=64\)
\(\Leftrightarrow12a=8\)
\(\Leftrightarrow a=\frac{8}{12}\) ( loại )
Vậy : \(\left(a,b\right)=\left(3,4\right)\)
Câu b trc nhé
M = | x - 4 | + 2021
Ta có \(\left|x-4\right|\ge0\forall x\)
\(\Rightarrow\left|x-4\right|+2021\ge2021\forall x\)
\(\Rightarrow M\ge2021\forall x\)
Dấu "= " xảy ra \(\Leftrightarrow\left|x-4\right|=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
Vậy Min M = 2021 \(\Leftrightarrow x=4\)
Tại s lại là tìm max ạ
(x - 1)(y + 3) = - 4
=> x - 1; y + 3 thuộc Ư(-4)
ta có bảng :
x-1 | 1 | -1 | -2 | 2 | -4 | 4 |
y+3 | -4 | 4 | 2 | -2 | 1 | -1 |
x | 2 | 0 | -1 | 3 | -3 | 5 |
y | -7 | 1 | -1 | -5 | -2 | -4 |
lx + 12l + 21 = (-7).(-8)
lx + 12l + 21 = 56
lx + 12l = 56 - 21
lx + 12l = 35
Suy ra x + 12 = 35 hay x + 12 = -35
TH1:
x + 12 = 35
x = 35 - 12
x = 23
TH2:
x + 12 = -35
x = -35 - 12
x = -35 + (-12)
x = -47
k mk nha bn,ủng hộ mk nha
a) \(\dfrac{-15}{4}:\dfrac{21}{-10}=\dfrac{-15}{4}.\dfrac{-10}{21}=\dfrac{25}{14}\)
b) \(\dfrac{-7}{14}:\left(-0,14\right)=\dfrac{-7}{14}.\dfrac{-50}{7}=\dfrac{25}{7}\)
c) \(\left(\dfrac{-11}{15}\right):1\dfrac{1}{10}=\dfrac{-11}{15}.\dfrac{10}{11}=\dfrac{-2}{3}\)
d) \(2\dfrac{1}{7}:1\dfrac{1}{14}=\dfrac{15}{7}.\dfrac{14}{15}=2\)
\(a.-\dfrac{15}{4}:\left(\dfrac{21}{-10}\right)\)
\(=-\dfrac{15}{4}\cdot\left(-\dfrac{10}{21}\right)\)
\(=\dfrac{25}{14}\)
\(b.-\dfrac{7}{14}:\left(-0,14\right)\)
\(=-\dfrac{1}{2}:\left(-\dfrac{7}{50}\right)\)
\(=\dfrac{25}{7}\)
\(c.\left(-\dfrac{11}{15}\right):\left(1\dfrac{1}{10}\right)\)
\(=\left(-\dfrac{11}{15}\right):\dfrac{11}{10}\)
\(=-\dfrac{2}{3}\)
\(d.\left(2\dfrac{1}{7}\right):\left(1\dfrac{1}{14}\right)\)
\(=\dfrac{15}{7}:\dfrac{15}{14}\)
\(=2\)
Nhiều như vậy sao trả lời hết được
Xin lỗi nha
Tk cho mk 1 cái
a; \(x+3\) ⋮ \(x\) - 4 (\(x\ne\) 4; \(x\in\) Z)
\(x\) - 4 + 7 ⋮ \(x-4\)
7 ⋮ \(x\) - 4
\(x\) - 4 \(\in\) Ư(7) = {- 7; -1; 1; 7}
Lập bảng ta có:
\(x-4\) | - 7 | -1 | 1 | 7 |
\(x\) | -3 | 3 | 5 | 11 |
Theo bảng trên ta có: \(x\) \(\in\) {- 3; 3; 5; 11}
Vậy \(x\) \(\in\) {- 3; 3; 5; 11}
Bài 1:
a,x=11
b,không tồn tại giá trị của x
c,x=-3
Bài 2:
a,=300
b,=51
\(\dfrac{21}{36}-\left(-\dfrac{11}{30}\right)=\dfrac{7}{12}+\dfrac{11}{30}=\dfrac{7.5+11.2}{60}=\dfrac{57}{60}=\dfrac{19}{20}\\ ----\\\dfrac{-4}{8}+\left(-\dfrac{3}{10}\right)=\dfrac{-1}{2}-\dfrac{3}{10}=\dfrac{-1.5-3}{10}=\dfrac{-8}{10}=-\dfrac{4}{5}\\ ----\\ \dfrac{7}{12}-\left(-\dfrac{9}{20}\right)=\dfrac{7}{12}+\dfrac{9}{20}=\dfrac{7.5+9.3}{60}=\dfrac{62}{60}=\dfrac{31}{30}\\ ---\\ \dfrac{-2}{5}+\left(-\dfrac{11}{30}\right)=-\dfrac{2}{5}-\dfrac{11}{30}=\dfrac{-2.6-11}{30}=-\dfrac{29}{30}\)
Ta có: A = 1 + 31 + 32 + 33 + ... + 330
=> 3A = 3 . (1 + 31 + 32 + 33 + ... 330)
=> 3A = 3 + 32 + 33 + 34 + ... + 331
=> 3A - A = (3 + 32 + 33 + 34 + ... + 331) - (1 + 31 + 32 + 33 + ... + 330)
=> 2A = 331 - 1
=> A = \(\frac{3^{31}-1}{2}\)= \(\frac{\left(3^4\right)^7\times3^3}{2}\) = \(\frac{\left(...1\right)^7\times27-1}{2}\) = \(\frac{\left(...1\right)\times7-1}{2}\) = \(\frac{\left(...6\right)}{2}\) = \(...3\)
Vì số cuối của A là số 3 mà số chính phương không có số 3 nên A không phải là số chính phương.
\(A=1+3+3^2+3^3+....+3^{30}\)
\(3A=3+3^2+3^3+3^4+.....+3^{31}\)
\(3A-A=3^{31}-1\)
\(A=\frac{3^{31}-1}{2}\)
Ta có : \(3^{31}=3^{30}.3=9^{15}.3=\overline{.....9}.3=\overline{......7}\)
\(\Rightarrow3^{31}-1=\overline{......6}\Rightarrow\frac{3^{31}-1}{2}=\overline{......3}\)
Do đó A có chữ số tận cùng là 3
Mà số chính phương không thể có chữ số tận cùng là 3 => A không phải số chính phương (đpcm)
a=8 => b=9 hoặc b=10
a=9 => b=10
Vì:\(7< a< 11\)
Nên:\(a=8\) hoặc \(a=9\)
\(\Rightarrow b=10\)
Vậy:\(a=8\) hoặc \(a=9;b=10\)