K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

18 tháng 2 2020

Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))

a) 3x + 5y ⋮ 7

=> 5.(3x + 5y) ⋮ 7

<=> 15x + 25y ⋮ 7 (1)

Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)

Lấy (1) trừ (2), ta có:

(15x + 25y) - (14x + 21y) ⋮ 7

<=> x + 4y ⋮ 7

Điều ngược lại đương nhiên là đúng =)))

Chúc em học tốt !!!

18 tháng 2 2020

cảm ơn nhé

13 tháng 11 2015

TẤT CẢ ĐỀU CÓ TRONG  " câu hỏi tương tự "

5 tháng 1 2016

3x + 5y chia hết cho 7 

3x + 5y  +7y chia hết cho 7 

3x + 12y chia hết cho 7 

3(x + 4y) chia hết cho 7 

( 3 , 7) = 1

Vậy x+ 4y chia hết cho 7

b) x + 4y chia hết cho 7 

3(x + 4y) chia hết cho  7

3x + 12y chia hết cho 7 

3x + 12y - 7y chia hết cho 7 

3x + 5y chia hết cho 7

< = > Điều ngược lại đúng 

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

27 tháng 2 2020

A=(2+2²+2³+2⁴)+(25+26+27+28)...+(217+218+219+220)

=2(1+2+4+8)+25(1+2+4+8)+...+217(1+2+4+8)

=15(2+25+29+...+217)

=30.(1+2⁴+28+...+216) chia hết cho 10

=> A có tận cùng là 0

27 tháng 2 2020

b) Có a-5b chia hết cho 17

=> 10(a-5b) chia hết cho 17.

=> 10a-50b chia hết cho 17.

Mà 51b= 17×3b chia hết cho 17

=> 10a-50b+51b chia hết cho 17

=> 10a+b chia hết cho 17

31 tháng 12 2014

Ta có : a+5b chia hết cho 7

=>10(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

=>10a+b+49b chia hết cho 7

=>(10a+b+49b)-49b chia hết cho 7(vì số chia hết cho 7-một số chia hết cho 7=1 số chia hết cho 7)

=>10a+b chia hết cho 7

31 tháng 12 2014

ta có : a+5b chia hết cho 7

=>10(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

=>10a+b+49b chia hết cho 7

=>(10a+b+49b)-49b chia hết cho 7(vì số chia hết cho 7-một số chia hết cho 7=1 số chia hết cho 7)

=>10a+b chia hết cho 7