Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
A=\(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)
A=1+\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)
A<1+\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{49\cdot50}\)
A<1+1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
=>A<1(câu 1)
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
Bài 1:
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)
\(< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1+1-\dfrac{1}{50}\)
\(=2-\dfrac{1}{50}\)
\(\Rightarrow A< 2-\dfrac{1}{50}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)
Vậy...
Arigato Gozaimatsu