K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=\(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)

A=1+\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)

A<1+\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{49\cdot50}\)

A<1+1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)

A<2-\(\frac{1}{50}\)<2

=>A<1(câu 1)

 

 

 

5 tháng 5 2017

A= \(\dfrac{1}{1^2}\)

8 tháng 2 2023

???

8 tháng 2 2023

bn ơi???

17 tháng 5 2021

`M=1/2^2+1/3^2+1/4^2+...+1/2021^2`
Vì `1/2^2>1/(2.3)`
`1/(3^2)>1/(3.4)`
`....................`
`1/2021^2>1/(2021.2022)`
`=>M>1/(2.3)+1/(3.4)+............+1/(2021.2022)`
`=>M>1/2-1/3+1/3-1/4+..........+1/2021-1/2022`
`=>M>1/2-1/2022=505/1011=1/3+56/337>1/3(1)`
Vì `1/2^2<1/(1.2)`
`1/(3^2)<1/(2.3)`
`....................`
`1/2021^2<1/(2021.2020)`
`=>M<1/(1.2)+1/(2.3)+............+1/(2020.2021)`
`=>M<1-1/2+1/2-1/3+..........+1/2020-1/2021`
`=>M<1-1/2021<1(2)`
`(1)(2)=>1/3<M<1`

+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3};\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4};\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5};...;\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}>\dfrac{1}{3}\left(1\right)\)+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2021^2}< \dfrac{1}{2020.2021}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}=1-\dfrac{1}{2021}< 1\left(2\right)\)Từ (1) và (2) suy ra: \(\dfrac{1}{3}< M< 1\)

16 tháng 5 2016

Câu 1:

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)

\(A=\frac{1}{1\times1}+\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+.....+\frac{1}{50\times50}\)

\(A< \frac{1}{1\times1}+\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{49\times50}\)

\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)

\(A< 2-\frac{1}{50}< 2\)

Câu 2:

\(S=3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+.....+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+.....+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}\)

\(S=\frac{3069}{512}\)

Câu 3:

\(\frac{1}{2\times3}=\frac{1}{6}\)

\(\frac{1}{2}-\frac{1}{3}=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\)

\(\Rightarrow\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

Câu 4:

\(M=\frac{9}{40}-\frac{11}{60}+\frac{13}{84}-\frac{15}{112}\)

\(M=\left(\frac{9}{40}-\frac{11}{60}\right)+\left(\frac{13}{84}-\frac{15}{112}\right)\)

\(M=\left(\frac{27}{120}-\frac{22}{120}\right)+\left(\frac{52}{336}-\frac{45}{336}\right)\)

\(M=\frac{1}{24}+\frac{1}{48}\)

\(M=\frac{2+1}{48}\)

\(M=\frac{3}{48}\)

\(M=\frac{1}{16}\)

Chúc bạn học tốtok

 

16 tháng 5 2016

câu 2:

s= 3+3/2+3/3^2+.....+3/2^9

=> 2s=6+3+3/2+...+3/2^8

=> 2s-s =( 6+3+3/2 + ....+3/2^8)- ( 3+3/2 +3/2^2+...+3/2^9)

=> s=6-3/2^9=3069/512

14 tháng 11 2018

1)A=987

18 tháng 9 2022

Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
                                         = 1/2-1/3+1/3-1/4+...+1/10-1/11 

                                         = 1/2 - 1/11 = 9/22  (đpcm)