Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số thứ nhất là n, số thứ 2 là n + 1, ƯC ( n, n+ 1)= a
Ta có : n chia hết cho a (1)
n + 1 chia hết cho a (2)
Từ (1) và (2) ta được :
n+ 1 - n chia hết cho a
=> 1 chia hết cho a
=> a = 1
=> ƯC ( n, n+1) = 1
=> n và n + 1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
\(A=1+2+2^2+2^3+...+2^{2022}\)
\(2A=2+2^2+2^3+...+2^{2023}\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)
\(A=2^{2023}-1\)
Mà: \(2^{2023}-1\) và \(2^{2023}\)
Là hai số tự nhiên liên tiếp nên:
A và B là hai số tự nhiện liên tiếp
a.
ọi số thứ nhất là x, số thứ 2 là x + 1
Có x . (x +1) = 111222
<=> x² + x = 111222
Cộng cả 2 vế với 1/4, ta có
x² + x + 1/4 = 111222,25
<=> x² + 2 . 1/2.x + (1/2)² = 111222,25 (xuất hiện hằng đẳng thức)
<=> (x + 1/2)² = 111222,25
<=> x + 1/2 = 333,5
<=> x = 333
Vậy số thứ nhất là 333, số thứ 2 là 334. Tích 2 số này bằng 111222
Còn lại mỏi tay quá
\(2A=2^1+2^2+2^3+2^4+...+2^{2010}.\)
\(A=2A-A=2^{2010}-2^0=2^{2010}-1\)
=> A và B là 2 số tự nhiên liên tiếp
Ta có: A=1+2+22+...+22009
=>2A=2+22+23+....+22010
=>2A-A=A=(2+22+23+...+22010)-(1+2+22+...+22009)
=>A=22010-1
=>A và B là 2 số tự nhiên liên tiếp (đpcm)
B = 2^2023 chứ nhỉ
A = 2^0 + 2^1 + 2^2 + ... + 2^2022
2A = 2^1 + 2^2 + 2^3 + ... + 2^2023
=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)
=> A = 2^2023 - 2^0
=> A = 2^2023 - 1
=> A và B là 2 stn liên tiếp
Ta có:
A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021
⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022
⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)
⇔A=22022−20⇔A=22022−20
⇔A=22022−1⇔A=22022−1
Mà B=22022⇒B=A+1B=22022⇒B=A+1
⇒A⇒A và BB là 22 số tự nhiên liên tiếp.
chúc học tốt.
ta có
\(2A=2+2^2+..+2^{2019}=\left(1+2+2^2..+2^{2018}\right)+2^{2019}-1\)
hay \(2A=A+2^{2019}-1\Leftrightarrow A=2^{2019}-1\)
vì vậy A và B là hai số tự nhiên liên tiếp
Hình như đây là 1 bài toán lớp 7. Bạn có thể giải theo cách đặt ẩn theo những bạn đã làm ở trên nhưng hình như lớp 7 chưa có đặt ẩn thì phải.
Mình sẽ chỉ bạn phương pháp giải chi tiết theo cách lớp 7 như sau:
1) Dự đoán kết quả (tính trong đầu):
Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều.
Bấm máy tính, ta có:
12 = 3.4
1122 = 33.34
111222 = 333.334
11112222 = 3333.3334
....
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh:
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1)
=333.334 (đpcm)
Đơn giản vậy thôi nếu biết trước kết quả, đây là 1 phương pháp bổ ích bạn nên tận dụng^
a la Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều.
Bấm máy tính, ta có:
12 = 3.4
1122 = 33.34
111222 = 333.334
11112222 = 3333.3334
....
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh:
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1)
=333.334 (đpcm)