K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

A = 1.2. + 2.3 + 3.4 + ... + 99.100

3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 2.3.1 + ... + 99.100.101 - 99.100.98

3A = 99.100.101

3A = 999900

A = 333300

15 tháng 8 2023

a/

3A=1.2.3+2.3.3+3.4.3+...+98.99.3=

=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=

=98.99.100=> A=98.33.100

b

6B=1.3.6+3.5.6+5.7.6+...+99.101.6=

=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=

=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=

=1.3+99.101.103=> (3+99.101.103):6

c/

9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=

=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=

=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=

=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9

Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k

Số k được tính theo quy luật \(k=\left(n+1\right)xd\)

            Trong đó: n: số thừa số của 1 số hạng

                            d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng

Chúc em học tốt

 

 

18 tháng 10 2015

bạn đăng ít thôi dc ko vậy

13 tháng 11 2016

Bài của bạn giống bài của mình thật!

11 tháng 9 2021

\(A=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3A=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+90.100\left(101-98\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3A=99.100.101\)

\(\Rightarrow A=\left(99.100.101\right):3\)

\(\Rightarrow A=333300\)

11 tháng 9 2021

\(B=1.3+2.4+3.5+...+99.101\)

\(\Rightarrow B=1\left(2+1\right)+2\left(3+1\right)+3\left(4+1\right)+...+99\left(100+1\right)\)

\(\Rightarrow B=1.2+1+2.3+2+3.4+3+...+99.100+99\)

\(\Rightarrow B=\left(1.2+2.3+3.4+...+99.100\right)+\left(1+2+3+...+99\right)\)

\(\Rightarrow B=333300+4950\)

\(\Rightarrow B=338250\)

Bài 5:

a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)

\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)

\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)

hay A=330

Vậy: A=330

8 tháng 9 2016

a) \(A=2.4+4.6+6.8+...+18.20\)

\(6A=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+...+18.20.\left(22-16\right)\)

\(6A=2.4.6+4.6.8-2.4.6+6.8.10-4.6.8+...+18.20.22-16.18.20\)

\(6A=18.20.22\)

\(A=\frac{18.20.22}{6}=\frac{7920}{6}=1320\)

8 tháng 9 2016

d/ Đặt : A = 1.2 + 2.3 + 3.4 + ......... + 99.100

=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 99.100.(101 - 98)

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101

=> 3A = 99.100.101

=> A = 99.100.101 / 3

=> A = 333300 

10 tháng 12 2016

Bài 1 : Ta có : a = 1.2 + 2.3 + 3.4 + ....... + 99.100

=> 3a = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...... + 99.100.(101 - 98)

=> 3a = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 99.100.101

=> 3a = 99.100.101

=>   a = \(\frac{99.100.101}{3}=333300\) 

17 tháng 12 2015

lấy 1 chia cho các tổng rồi áp dụng công thức là ra