Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|\left|2x+1\right|-2\right|=3\)
\(\Leftrightarrow\left|2x+1\right|-2=3\)
\(\Leftrightarrow\left|2x+1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Lời giải:
Nếu $2x+3y\vdots 17$
$\Rightarrow 9(2x+3y)\vdots 17$
$\Rightarrow 18x+27y\vdots 17$
$\Rightarrow 18x+27y-17y\vdots 17$
$\Rightarrow 18x+10y\vdots 17$
$\Rightarrow 2(9x+5y)\vdots 17$
$\Rightarrow 9x+5y\vdots 17(1)$
-----------------------
Nếu $9x+5y\vdots 17$
$\Rightarrow 2(9x+5y)\vdots 17$
$\Rightarrow 18x+10y\vdots 17$
$\Rightarrow 18x+10y+17y\vdots 17$
$\Rightarrow 18x+27y\vdots 17$
$\Rightarrow 9(2x+3y)\vdots 17$
$\Rightarrow 2x+3y\vdots 17(2)$
Từ $(1); (2)$ ta có đpcm.
Ta có 17x+17y chia hết cho 17
9x+5y chia hết cho 17
=> 17x+17y-9x-5y=8x+12y=4(2x+3y) chia hết cho 17 => 2x+3y chia hết cho 17
Giả sử: \(9x+5y⋮17\)
\(\Rightarrow3\left(9x+5y\right)⋮17\)
\(\Rightarrow27x+15y⋮17\)
\(\Rightarrow\left(17x+10x+15y\right)⋮17\)
\(Vì\) \(17x⋮17\) nên \(\left(10x+15y\right)⋮17\)
\(\Rightarrow2x+3y⋮17\) \(chỉ\)\(khi\) \(\left(9x+5y\right)⋮17\left(dieu1\right)\)
Giả sử: \(2x+3y⋮17\)
\(\Rightarrow5\left(2x+3y\right)⋮17\)
\(\Rightarrow\left(10x+15y\right)⋮17\)
\(\Rightarrow\left(17x+10x+15y\right)⋮17\)
\(\Rightarrow\left(27x+15y\right)⋮17\)
\(\Rightarrow3\left(9x+5y\right)⋮17\)
\(Mà\) \(3\) không chia hết cho 17 \(\Rightarrow9x+5y⋮17\) (điều 2)
Từ điều 1 và điều 2 \(\Rightarrow2x+3y⋮17\Leftrightarrow9x+5y⋮17\)
Vậy \(2x+3y⋮17\Leftrightarrow9x+5y⋮17\)
ta có: 2x+3y chia hết cho 17
suy ra 2x+3y+34x+17y chia hết cho 17
36x+20y chia hết cho 17
4.(9x+5y) chia hết cho 17
mà (17,4)=1
9x+5y chia hết cho 17
sau đó bạn làm ngược lại là được
9x+5y chia hết cho 17 mà (4,17)=1 nên 4(9x+5y) chia hết cho 17 hay 36x+20y chia hết cho 17.
mà 34x chia hết cho 17, 17y chia hết cho 17 nên 36x+20y-34x-17y=2x+3y chia hết cho 17
a)
CM chiều xuôi.
Có: \(2x+3y⋮17.\) CMR: \(9x+5y⋮17\)
\(\Rightarrow9\left(2x+3y\right)⋮17\)
\(\Rightarrow18x+27y⋮17\)
\(\Rightarrow18x+10y+17y⋮17\)
MÀ \(17y⋮17\)
\(\Rightarrow2\left(9x+5y\right)⋮17\)
\(\Rightarrow9x+5y⋮17\left(đpcm\right)\) do 2 ko chia hết cho 17
CM chiều đảo:
Có: \(9x+5y⋮17\) . CMR: \(2x+3y⋮17\)
=> \(18x+10y⋮17\)
=> \(18x+27y-17y⋮17\)
=> \(18x+27y⋮17\) do \(17y⋮17\)
=> \(2x+3y⋮17\) do 9 ko chia hết cho 17.
VẬY QUA CM ĐẢO VÀ XUÔI TA CÓ ĐPCM.
**** ĐỀ BÀI THIẾU NGHIÊM TRỌNG LÀ \(x;y\inℤ\) nhé !!!!
a) Ta phải chứng minh: 2.x + 3.y chia hết cho 17 thì 9.x + 5.y chia hết cho 17
Ta có 4.(2x + 3y) + (9x+ 5y) = 17x + 17y chia hết cho 17
Do vậy : 2x + 3y chia hết cho 17; 4.(2x + 3y) chia hết cho 17; 9x + 5y chia hết cho 17
Ngược lại : Ta có 4.(2x + 3y) chia hết cho 17 mà (4;17) = 1 => 2x + 3y chia hết cho 17.
b) Gọi số cần tìm là a. Theo đề bài ra ta có a:9 dư 5 => 2a - 1 chia hết cho 9
a :7 dư 4 => 2a - 1 chia hết cho 7; a: 5 dư 3 => 2a - 1 chia hết cho 5
Vì 2a - 1 chia hết cho 9,7,5 và a nhỏ nhất => 2a - 1 thuộc BCNN(9;5;7)
9 = 32; 5 = 5; 7 = 7 => BCNN(9;5;7) = 32.5.7 = 315. Ta có: 2a - 1 = 135
2a = 315 + 1 => 2a = 316 => a = 316 : 2 = 158
=> Số thỏa mãn yêu cầu đề bài mà ta cần tìm là 158.