Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a, Phương trình có nghiệm khi:
\(\left(m+2\right)^2+m^2\ge4\)
\(\Leftrightarrow m^2+4m+4+m^2\ge4\)
\(\Leftrightarrow2m^2+4m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)
b, Phương trình có nghiệm khi:
\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)
\(\Leftrightarrow2m^2+6m\le0\)
\(\Leftrightarrow-3\le m\le0\)
2.
a, Phương trình vô nghiệm khi:
\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)
\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)
\(\Leftrightarrow4m^2-7< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)
b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)
\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)
Phương trình vô nghiệm khi:
\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)
\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
c/
\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=x+\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
2.
Theo điều kiện có nghiệm của pt lượng giác bậc nhất với sin và cos:
\(m^2+\left(m-1\right)^2\ge5\)
\(\Leftrightarrow m^2-m-2\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)
a/
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{3}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\sqrt{\frac{3}{2}}>1\)
Pt vô nghiệm
b/
\(\Leftrightarrow\frac{2}{\sqrt{13}}sinx+\frac{3}{\sqrt{13}}cosx=\frac{2}{\sqrt{13}}\)
Đặt \(\frac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow sinx.cosa+cosx.sina=cosa\)
\(\Leftrightarrow sin\left(x+a\right)=sin\left(\frac{\pi}{2}-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+a=\frac{\pi}{2}-a+k2\pi\\x+a=\frac{\pi}{2}+a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2a+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
a/ \(sin^2x+sinx-3=m\)
Đặt \(sinx=t\Rightarrow-1\le t\le1\Rightarrow t^2+t-3=m\)
Xét \(f\left(t\right)=t^2+t-3\) trên \(\left[-1;1\right]\)
\(f\left(-1\right)=-3;\) \(f\left(1\right)=-1\) ; \(f\left(-\frac{1}{2}\right)=-\frac{13}{4}\)
\(\Rightarrow-\frac{13}{4}\le f\left(t\right)\le-1\)
\(\Rightarrow\) Để pt có nghiệm thì \(-\frac{13}{4}\le m\le-1\)
b/ Tương tự ta được \(-2\le m\le2\)
c/ \(\Leftrightarrow2cos^2x-1-cosx+m=0\)
\(\Leftrightarrow2t^2-t-1=-m\) với \(t=cosx\)
Giống câu a, ta được \(-\frac{9}{8}\le-m\le2\Rightarrow-2\le m\le\frac{9}{8}\)
d/\(\Leftrightarrow sinx=\frac{-2m+3}{2}\)
\(-1\le sinx\le1\Rightarrow-1\le\frac{-2m+3}{2}\le1\)
\(\Rightarrow\frac{1}{2}\le m\le\frac{5}{2}\)
Hướng dẫn giải:
Chọn A.
Ta có: sin2x – 2( m- 1)sinx. cosx – (m- 1).cos2x = m
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
3.
Theo điều kiện của pt lượng giác bậc nhất:
\(m^2+\left(3m+1\right)^2\ge\left(1-2m\right)^2\)
\(\Leftrightarrow10m^2+6m+1\ge4m^2-4m+1\)
\(\Leftrightarrow3m^2+5m\ge0\Rightarrow\left[{}\begin{matrix}m\ge0\\m\le-\frac{5}{3}\end{matrix}\right.\)
4.
\(\Leftrightarrow1-sin^2x-\left(m^2-3\right)sinx+2m^2-3=0\)
\(\Leftrightarrow-sin^2x-m^2sinx+2m^2+3sinx-2=0\)
\(\Leftrightarrow\left(-sin^2x+3sinx-2\right)+m^2\left(2-sinx\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2-sinx\right)+m^2\left(2-sinx\right)=0\)
\(\Leftrightarrow\left(2-sinx\right)\left(sinx-1+m^2\right)=0\)
\(\Leftrightarrow sinx=1-m^2\)
\(\Rightarrow-1\le1-m^2\le1\)
\(\Rightarrow m^2\le2\Rightarrow-\sqrt{2}\le m\le\sqrt{2}\)
1.
Bạn xem lại đề, \(sin^2x\left(\frac{x}{2}-\frac{\pi}{4}\right)\) là sao nhỉ?Có cả x trong lẫn ngoài ngoặc?
2.
ĐKXĐ: \(sinx\ne0\)
\(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)
\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=1-cos^2x\)
\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)