Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{2}\right)^{50}=\left[\left(\dfrac{1}{2}\right)^5\right]^{10}=\left(\dfrac{1}{32}\right)^{10}\)
1/12>1/32
=>(1/12)^10>(1/32)^10
=>(1/12)^10>(1/2)^50
Có: \(\left(\dfrac{1}{12}\right)^{10}=\dfrac{1}{12^{10}}\)
\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}=\dfrac{1}{\left(2^5\right)^{10}}=\dfrac{1}{32^{10}}\)
Do \(12< 32\Rightarrow12^{10}< 32^{10}\)
\(\Rightarrow\dfrac{1}{12^{10}}>\dfrac{1}{32^{10}}\) hay \(\left(\dfrac{1}{12}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)
\(\left(\frac{1}{2}\right)^{40}=\left(\frac{1}{2}\right)^{10\cdot4}=\left(\frac{1}{16}\right)^{10}\)
Mà ta có
\(\left(\frac{1}{32}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{32}\right)^{10}\)
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.\left(5^2\right)^4}=7.\frac{5^8}{5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3.3^8.5^2.5^3}{3.5.5^4.3^8}=\frac{5^5}{5^5}=1\)
c) Đề hơi sai roi bạn oi
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2=\frac{1}{100}+\frac{121}{100}=\frac{61}{50}\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
\(\left(\dfrac{3}{5}\right)^{10}\cdot\left(\dfrac{5}{3}\right)^{10}-\dfrac{13^4}{39^4}+2014^0\)
=1-(1/3)^4+1
=4/3-1/81
=107/81
1,1020và 9010
ta có:+,1020=(102)10=10010
+,9010=9010
vì 10010>9010=>1020>9010
2,(1/16)10 và (1/2)50
ta có:+, (1/16)10=(1/16)10
+,(1/2)50=(1/25)10=(1/32)10
vì (1/16)10>(1/32)10=>(1/16)10>(1/2)50
k mik nhé
\(a,\) \(10^{20}=10^{10+10}=10^{10}.10^{10}\)
\(90^{10}=9^{10}.10^{10}\)
Vì \(10^{10}.10^{10}>9^{10}.10^{10}\)
\(\Rightarrow10^{20}>90^{10}\)
Vậy \(10^{20}>90^{10}\)
\(b,\)\(\left(\frac{1}{16}\right)^{10}=\frac{1^{10}}{16^{10}}=\frac{1}{\left(4^2\right)^{10}}=\frac{1}{4^{20}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{\left(2^2\right)^{25}}=\frac{1}{4^{25}}\)
Vì \(\frac{1}{4^{20}}>\frac{1}{4^{25}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
~~~~~~~~~~Hok tốt~~~~~~~~~~~
\(\left(\frac{3}{4}\right)^3:\left(\frac{3}{4}\right)^2:\left(\frac{2}{3}\right)^3=\frac{3}{4}.\frac{27}{8}=\frac{81}{32}\)
(\(\frac{1}{5}\))2 .n = (\(\frac{1}{125}\))3 - n
<=> \(\frac{1}{25}\)n +n = \(\frac{1}{5^9}\)
<=> \(\frac{26}{25}\)n = \(\frac{1}{5^9}\)
<=> n = \(\frac{1}{5^9}\): \(\frac{26}{25}\)= \(\frac{1}{2031250}\)
ta có:\(\left(\dfrac{-1}{16}\right)^{10}=\left(\dfrac{1}{16}\right)^{10}=\left(\dfrac{1^4}{2^4}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}=\dfrac{1^{40}}{12^{40}}=\dfrac{1}{2^{40}}\)
ta có:
\(\left(\dfrac{-1}{2}\right)^{500}=\left(\dfrac{1}{2}\right)^{500}=\dfrac{1^{500}}{2^{500}}=\dfrac{1}{2^{500}}\)
Vì 40<500
⇒2\(^{40}< 2^{500}\)
⇒\(\dfrac{1}{2^{40}}>\dfrac{1}{2^{500}}\)
⇒\(\left(\dfrac{-1}{16}\right)^{10}>\left(\dfrac{-1}{2}\right)^{500}\)
Vậy \(\left(\dfrac{-1}{16}\right)^{10}>\left(\dfrac{-1}{2}\right)^{500}\)
\(+,\left(\dfrac{-1}{16}\right)^{10}=\left(\dfrac{\left(-1\right)^4}{2^4}\right)^{10}=\left[\left(\dfrac{-1}{2}\right)^4\right]^{10}=\left(\dfrac{-1}{2}\right)^{40}\)
Vì 40<500→\(\left(\dfrac{-1}{2}\right)^{40}< \left(\dfrac{-1}{2}\right)^{500}hay\left(\dfrac{-1}{16}\right)^{10}< \left(\dfrac{-1}{2}\right)^{500}\)