K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,1020và 9010

ta có:+,1020=(102)10=10010

        +,9010=9010

vì 10010>9010=>1020>9010

2,(1/16)10 và (1/2)50

ta có:+, (1/16)10=(1/16)10

         +,(1/2)50=(1/25)10=(1/32)10

vì (1/16)10>(1/32)10=>(1/16)10>(1/2)50

k mik nhé

10 tháng 9 2018

\(a,\)  \(10^{20}=10^{10+10}=10^{10}.10^{10}\)

        \(90^{10}=9^{10}.10^{10}\)

  Vì \(10^{10}.10^{10}>9^{10}.10^{10}\)

    \(\Rightarrow10^{20}>90^{10}\)

Vậy \(10^{20}>90^{10}\)

\(b,\)\(\left(\frac{1}{16}\right)^{10}=\frac{1^{10}}{16^{10}}=\frac{1}{\left(4^2\right)^{10}}=\frac{1}{4^{20}}\)

   \(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{\left(2^2\right)^{25}}=\frac{1}{4^{25}}\)

Vì \(\frac{1}{4^{20}}>\frac{1}{4^{25}}\)

\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

                         ~~~~~~~~~~Hok tốt~~~~~~~~~~~

\(\left(\dfrac{1}{2}\right)^{50}=\left[\left(\dfrac{1}{2}\right)^5\right]^{10}=\left(\dfrac{1}{32}\right)^{10}\)

1/12>1/32

=>(1/12)^10>(1/32)^10

=>(1/12)^10>(1/2)^50

19 tháng 8 2023

Có: \(\left(\dfrac{1}{12}\right)^{10}=\dfrac{1}{12^{10}}\)

\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}=\dfrac{1}{\left(2^5\right)^{10}}=\dfrac{1}{32^{10}}\)

Do \(12< 32\Rightarrow12^{10}< 32^{10}\)

\(\Rightarrow\dfrac{1}{12^{10}}>\dfrac{1}{32^{10}}\) hay \(\left(\dfrac{1}{12}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)

21 tháng 12 2021

\(2^{333}< 3^{222}\)

21 tháng 12 2021

mình cần cách giải

ta có 1020=(102)10=10010>910

Vậy 1020>910

Chúc học tốt!

17 tháng 7 2018

10^20 và 9^10

10^20=(10^2)^10=100^10

Vì 100^10>9^10=>10^20>9^10

Vậy 10^20>9^10

22 tháng 9 2016

9920=9920

999910=(99101)10=99111

9920<99111

Vậy 920<999910

22 tháng 9 2016

ta có 9999= 99 .101. 
do đó \(9999^{10}\) = \(99^{10}\) * \(101^{10}\)
còn \(99^{20}\) = \(99^{10}\) * \(99^{10}\)
\(99^{10}\) < \(101^{10}\) nên \(99^{10}\) * \(99^{10}\) < \(99^{10}\) * \(101^{10}\)
vậy \(99^{20}\) < \(9999^{10}\)
 

5 tháng 7 2016

ko biết

14 tháng 10 2021

\(\left(\dfrac{1}{81}\right)\) mũ mấy em

14 tháng 10 2021

mũ 7 ạ

14 tháng 10 2021

\(\left(\dfrac{1}{27}\right)^{10}=\dfrac{1}{27^{10}}=\dfrac{1}{\left(3^3\right)^{10}}=\dfrac{1}{3^{30}}\)

\(\left(\dfrac{1}{81}\right)^7=\dfrac{1}{81^7}=\dfrac{1}{\left(3^4\right)^7}=\dfrac{1}{3^{28}}\)

Do \(3^{30}>3^{28}\Leftrightarrow\dfrac{1}{3^{30}}< \dfrac{1}{3^{28}}\)

\(\Leftrightarrow\left(\dfrac{1}{27}\right)^{10}< \left(\dfrac{1}{81}\right)^7\)

14 tháng 10 2021

Ta có:

\(\left(\dfrac{1}{27}\right)^{10}=\left(\dfrac{1}{3^3}\right)^{10}=\left(\dfrac{1}{3}\right)^{30}\)

\(\left(\dfrac{1}{81}\right)^7=\left(\dfrac{1}{3^5}\right)^7=\left(\dfrac{1}{3}\right)^{35}\)

Vì \(\left(\dfrac{1}{3}\right)^{35}>\left(\dfrac{1}{3}\right)^{30}\)

\(\left(\dfrac{1}{27}\right)^{10}< \left(\dfrac{1}{81}\right)^7\)

13 tháng 9 2016

 ta có 9999= 99 *101. 
do đó 9999^10 = 99 ^10 * 101^10 
còn 99^20 = 99^10 * 99^10 
vì 99^10 < 101^10 nên 99^10 * 99^10 < 99 ^10 * 101^10 . 
vậy 99^20 < 9999^10. 
chào bạn

13 tháng 9 2016

cảm ơn