Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ như thế này thôi nhé
x+2/x-6 = x-6+8/x-6 = 1 + 8/x-6
để x+2/x-6 là số hữu tỉ dương => x-6 thuộc Ư(8)={ -1 ; 1 ; 2 ; -2 ; 4 ; -4 ; 8 ; -8 }
nếu x -6 = 1 => x = 7 ( TM )
Nếu x - 6 = -1 => x= 8 ( tm )
Nếu x - 6 = 2 => x = 8 ( tm )
Nếu x -6 = -2 => x = 4 ( tm )
Nếu x - 6 = 4 => x = 10 ( tm )
Nếu x -6 = -4 => x = 2 ( tm)
Nếu x -6 = 8 => x = 14 ( tm )
Nếu x -6=-8 => x = -2 ( ktm )
Vậy x € { 7 ; 5 ; £ ; 4 ; 2 ; 10 ; 14 } thì x+2 / x-6 là số hữu tỉ dương
b/ câu này bạn cũng làm tương tự như vậy nhưng x phải là số âm thì mới thỏa mãn .
a)\(\frac{x+2}{x-6}\)là số hữu tỉ dương\(\Leftrightarrow x+2\)và \(x-6\)cùng dấu.
Mà x + 2 > x - 6 nên \(\hept{\begin{cases}x+2< 0\\x-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>6\end{cases}}\)
Vậy x < - 2 và x > 6 thì \(\frac{x+2}{x-6}\)là số hữu tỉ dương
Mình làm mẫu 2 bài đầu tiên thôi nhé!! 😃
a, Để 3/(x - 1) dương thì 3 và x - 1 cùng dấu
Mà 3 > 0 => x - 1 > 0 => x > 1
b, Để 5/(x - 2) âm thì 5 và x - 2 trái dấu
Mà 5 > 0 => x - 2 < 0 => x < 2
*tk giúp mình nhé!! 😊*
a, \(\frac{3}{x-1}\) là số dương => \(\frac{3}{x-1}>0\) => x - 1 cùng dấu với 3
Vì x - 1 là mẫu số \(\Rightarrow x-1\ne0\) \(\Rightarrow x-1>0\Rightarrow x>0+1\Rightarrow x>1\)
b, \(\frac{5}{x-2}\) là số âm => \(\frac{5}{x-2}< 0\) => x - 2 khác dấu với 5
Vì x - 2 là mẫu số \(\Rightarrow x-2\ne0\Rightarrow x-2< 0\Rightarrow x< 0+2\Rightarrow x< 2\)
c, \(\frac{x-3}{x-5}\) là số dương => \(\frac{x-3}{x-5}>0\) => x - 3 và x - 5 cùng dấu
\(TH1:\hept{\begin{cases}x-3>0\\x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x>0+3\\x>0+5\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>5\end{cases}\Rightarrow}}x>5}\)
\(TH2:\hept{\begin{cases}x-3< 0\\x-5< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0+3\\x< 0+5\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< 5\end{cases}\Rightarrow}x< 3}\)
d, \(\frac{x+7}{x+10}\) là số âm => \(\frac{x+7}{x+10}< 0\) => x + 7 và x + 10 khác dấu
\(TH1:\hept{\begin{cases}x+7>0\\x+10< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>0-7\\x< 0-10\end{cases}\Rightarrow}\frac{x>-7}{x< -10}\) ( loại )
\(TH2:\hept{\begin{cases}x+7< 0\\x+10>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0-7\\x>0-10\end{cases}\Rightarrow}\hept{\begin{cases}x< -7\\x>-10\end{cases}\Rightarrow}-10< x< -7}\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=5x\left(1\right)\)
Ta có :
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge\left|x+1+x+2+x+3+x+4\right|=\left|4x+10\right|\)
\(pt\left(1\right)\Leftrightarrow\left|4x+10\right|=5x\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+10=5x\\4x+10=-5x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\9x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-\dfrac{10}{9}\end{matrix}\right.\) \(\left(thỏa.mãnx\inℚ\right)\)
\(a,\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)
Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{4}{x-11}< 0\)
\(\Rightarrow x-11< 0\)
\(\Rightarrow x< 11\)
\(2,\frac{x+2}{x-6}=\frac{x-6+8}{x-6}=1+\frac{8}{x-6}\)
Để phân số trên là số hữu tỉ âm \(\frac{\Rightarrow8}{x-6}< 1\Rightarrow x-6>8\Rightarrow x>14\)
\(3,\frac{x-3}{x+7}=\frac{x+7-10}{x+7}=1-\frac{10}{x+7}\)
Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{10}{x+7}< 1\Rightarrow x+7>10\Rightarrow x>3\)
1: Để \(\dfrac{-5}{x-1}< 0\) thì x-1>0
hay x>1
2: Để \(\dfrac{7}{x-6}>0\) thì x-6>0
hay x>6
3: Để \(\dfrac{-3}{x-6}< 0\) thì x-6<0
hay x<6
a) Ta có: \(\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)
Để phân số trên là số hữu tỉ âm.
=>\(\frac{4}{x-11}
Câu 1 :
\(a,2\left(\frac{3}{4}-5x\right)=\frac{4}{5}-3x\)
\(\Rightarrow\frac{3}{2}-10x=\frac{4}{5}-3x\)
\(\Rightarrow7x=\frac{3}{2}-\frac{4}{5}\)
\(\Rightarrow7x=\frac{7}{10}\)\(\Leftrightarrow x=0,1\)
\(b,\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow11x=\frac{2}{3}+1-\frac{3}{2}\)
\(\Rightarrow11x=\frac{4+6-9}{6}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
Câu 2 :
\(a,\frac{2}{x-1}< 0\)
Vì \(2>0\Rightarrow\)để \(\frac{2}{x-1}< 0\)thì \(x-1< 0\Leftrightarrow x< 1\)
\(b,\frac{-5}{x-1}< 0\)
Vì \(-5< 0\)\(\Rightarrow\)để \(\frac{-5}{x-1}< 0\)thì \(x-1>0\Rightarrow x>1\)
\(c,\frac{7}{x-6}>0\)
Vì \(7>0\Rightarrow\)để \(\frac{7}{x-6}>0\)thì \(x-6>0\Rightarrow x>6\)