Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(999993^{1999}=999993^{1996}.999993^3=\)
\(=\left(999993^4\right)^{499}.999993^3\)
\(999993^4\) có tận cùng là 1\(\Rightarrow\left(999993^4\right)^{499}\) có tận cùng là 1
\(999993^3\) có tận cùng là 7
\(\Rightarrow999993^{1999}\) có tận cùng là 7
Ta có
\(555557^{1997}=555557^{1996}.555557=\)
\(=\left(555557^4\right)^{499}.555557\)
\(555557^4\) có tận cùng là 1\(\Rightarrow\left(555557^4\right)^{499}\) có tận cùng là 1
\(555557\) có tận cùng là 7
\(\Rightarrow555557^{1997}\) có tận cùng là 7
\(\Rightarrow A\) có tận cùng là 0 \(\Rightarrow A⋮5\)
quá ez, vì số dư 1 của số 9999931999 - số dư 1 của số 5555571997 = dư 0. Mà dư 0 là không dư nên chia hết cho 2 và 5. Cho mình 1 điểm nhé
Ta thấy: 9999931999 - 5555571997 có hiệu tận cùng là 2 vậy số trên ko bao giời chia hết cho 5
Lời giải:
a. $a$ chia hết cho 2 và 5.
$\Rightarrow a=BC(2,5)$
$\Rightarrow a\vdots BCNN(2,5)\Rightarrow a\vdots 10$.
$\Rightarrow a$ có tận cùng là $0$.
b.
$a$ có tổng các chữ số là $1017$. Mà $1017\vdots 9$ nên $a\vdots 9$.
Mà $a\vdots 10$
$\Rightarrow a=BC(9,10)\Rightarrow a\vdots BCNN(9,10)$
$\Rightarrow a\vdots 90$.
a, 995 - 984 + 973 - 962
= (…9 ) - (…6) + (…3) - (…6)
= 0
Số này có tận cùng bằng 0 nên chia hết cho 2 và 5 tick minh nha
1d)Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Ta có: 9999931999 có chữ số tận cùng là 31999 = (34)499. 33 = 81499.27
Ta có: 9999931999=(74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
Lời giải:
$A=n(n-1)(n+1)(n^2+1)=n(n^2-1)(n^2+1)$
Vì $n^2$ là scp nên $n^2$ có tận cùng là $0,1,4,5,6,9$
Nếu $n^2$ tận cùng là $0$ thì $n$ tận cùng là $0$
$\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 10\vdots 5$
Nếu $n^2$ tận cùng là $5$ thì $n$ tận cùng là $5$
$\Rightarrow n\vdots 5\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 5$
Nếu $n^2$ tận cùng là $1$ hoặc $6$ thì $n^2-1$ tận cùng là $0$ hoặc $5$
$\Rightarrow n^2-1\vdots 5\Rightarrow A\vdots 5$
Nếu $n^2$ tận cùng là $4$ hoặc $9$ thì $n^2+1$ tận cùng là $5$ hoặc $0$
$\Rightarrow n^2+1\vdots 5\Rightarrow A\vdots 5$
Vậy tóm lại $A\vdots 5$
----------------
Lại có:
$A=n(n^2-1)(n^2+1)=n(n^4-1)$
Nếu $n$ chẵn thì $A=n(n^4-1)\vdots 2$
Nếu $n$ lẻ thì $n^4-1$ chẵn $\Rightarrow A=n(n^4-1)\vdots 2$
Vậy tóm lại $A\vdots 2$
Vậy $A\vdots 2; A\vdots 5\Rightarrow A\vdots 10$
b.
$A=n(n^4-1)=n^5-n\vdots 10$
$\Rightarrow n^5, n$ có cùng chữ số tận cùng.