K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10

Lời giải:

$A=n(n-1)(n+1)(n^2+1)=n(n^2-1)(n^2+1)$

Vì $n^2$ là scp nên $n^2$ có tận cùng là $0,1,4,5,6,9$

Nếu $n^2$ tận cùng là $0$ thì $n$ tận cùng là $0$

$\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 10\vdots 5$

Nếu $n^2$ tận cùng là $5$ thì $n$ tận cùng là $5$

$\Rightarrow n\vdots 5\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 5$

Nếu $n^2$ tận cùng là $1$ hoặc $6$ thì $n^2-1$ tận cùng là $0$ hoặc $5$

$\Rightarrow n^2-1\vdots 5\Rightarrow A\vdots 5$

Nếu $n^2$ tận cùng là $4$ hoặc $9$ thì $n^2+1$ tận cùng là $5$ hoặc $0$

$\Rightarrow n^2+1\vdots 5\Rightarrow A\vdots 5$

Vậy tóm lại $A\vdots 5$

----------------

Lại có:

$A=n(n^2-1)(n^2+1)=n(n^4-1)$

Nếu $n$ chẵn thì $A=n(n^4-1)\vdots 2$

Nếu $n$ lẻ thì $n^4-1$ chẵn $\Rightarrow A=n(n^4-1)\vdots 2$
Vậy tóm lại $A\vdots 2$

Vậy $A\vdots 2; A\vdots 5\Rightarrow A\vdots 10$

b.

$A=n(n^4-1)=n^5-n\vdots 10$

$\Rightarrow n^5, n$ có cùng chữ số tận cùng.

20 tháng 9 2023

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.

23 tháng 10 2016

Linh ơi bài này ở đâu thế

23 tháng 10 2016

bài này ở toán buổi chiều

AH
Akai Haruma
Giáo viên
18 tháng 7

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$