Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là CD của vườn (x > 0)
CR của vườn : x − 12(m)
S ban đầu của vườn : x(x − 12) (m2)
Chiều rộng khi giảm 4m : x − 16 (m)
Chiều dài khi tăng 3m : x + 3 (m)
S vườn sau khi tăng / giảm là : x − 16(x + 3) (m2)
Ta có pt :
x(x − 12) − 15 = (x − 16) (x + 3)
⇔ x2 − 12x − 15 = x2 − 13x − 48
⇔ x −33 = 0
⇔ x = 33 (nhận)
CD lúc đầu của vườn là: 33 mét
CR lúc đầu của vườn là : 33-12= 21 mét
Vậy CV lúc đầu của vườn là : (33+21) x 2 = 108(m)
nửa chu vi: 100/2 = 50 m
Gọi chiều rộng của mảnh vườn là x(m)(x>0)
=>chiều dài mảnh vườn là 50-x(m)
Diện tích mảnh vườn ban đầu là x(50-x)
chiều rộng khi tăng là x+3(m)
chiều dài khi giảm là 50-x-4=46-x(m)
Diện tích mới của mảnh vườn là:(x+3).(46-x)( m 2 )
Vì diện tích mới của mảnh vườn giảm 2m vuông nên ta có pt: (x+3)(46-x)=x(50-x)-2
Giải pt trên ta được x=20(TMĐK)
Vậy diện tích mảnh vườn là :20(50-20)=600( m 2 )
Gọi chiều rộng,chiều dài của thửa ruộng ban đầu lần lượt là x,y(m,0<x<y)
Nửa chu vi thửa ruộng là: 100:2=50(m)
=>x+y=50(1)
Diện tích của thửa ruộng ban đầu là :xy(m2)
Theo bài ra:
Chiều rộng thửa ruộng sau khi tăng thêm là: x+3(m)
Chiều dài thửa ruộng sau khi giảm là: y-4(m)
Diện tích vườn giảm 2m2
=> (x+3)(y-4)=xy-2(2)
Từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}x+y=50\\\left(x+3\right)\left(y-4\right)=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\xy-4x+3y-12=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=xy-2-xy+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=150\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=140\\x+y=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=30\end{matrix}\right.\)(TMĐK)
Vậy chiều dài ban đầu của thửa ruộng là 30m
chiều rộng ban đầu của thửa ruộng là 20m
Giả thiết khu vườn hình chữ nhật vì bạn nói đến chiều dài và chiều rộng.
Gọi chiều dài của khu vườn là D (m) và chiều rộng là R (m).
Tăng chiều rộng thêm 2m và giảm chiều dài đi 2m thì khu vườn thành hình vuông tức là : D - 2 = R + 2 => D = R + 4.
Mà diện tích khu vườn là: 45 m2 nên: Diện tích = DxR = (R+4)xR = 45
\(\Leftrightarrow R\left(R+4\right)=45\Leftrightarrow R^2+4R-45=0\Leftrightarrow\left(R-5\right)\left(R+9\right)=0\)
có 2 nghiệm là R = -9 (loại) và R = 5 (m) => Chiều Rộng là 5 m và chiều Dài là 5+4 = 9 m.
Theo đề bài ra ta có :
Gọi chiều dài là D ; chiều rộng là R
Tăng chiều rộng thêm 2 m chiều dài giảm đi 2m trở thành hình vuông vậy thì => D - 2 = R + 2 < = > D = R + 4
Diện tích khu vườn đó là 45 vậy => S = D x R < = > ( r + 4 ) x R = 45
< = > R ( R + 4 ) = 45 < = > R2 + 4R - 45 = 0 < = > ( R - 5 ) ( R + 9 ) = 0
R = -9 ( LOẠI ) và R = 5 ( M ) => CHIỀU RỘNG = 5 VÀ CHIỀU DÀI = 5 + 4 = 9 ( m )
Lời giải:
Gọi chiều dài và chiều rộng khu vườn ban đầu lần lượt là $a,b$ (m)
Theo bài ra ta có:
$a+b=100:2=50(1)$
$(a+2)(b-1)=ab-17$
$\Leftrightarrow ab-a+2b-2=ab-17$
$\Leftrightarrow -a+2b=-15(2)$
Từ $(1); (2)\Rightarrow b=\frac{35}{3}; a=\frac{115}{3}$ (m)
Diện tích khu vườn lúc đầu: $S=ab=\frac{115}{3}.\frac{35}{3}=\frac{4025}{9}$ (m2)