Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là a(m),b(m)(ĐK: a>0; b>0)
Nửa chu vi mảnh vườn là: 100/2=50(m)
Do đó, ta có: a+b=50
Tăng chiều rộng thêm 3m và giảm chiều dài đi 4m thì diện tích giảm 2m2 nên ta có:
(a-4)(b+3)=ab-2
=>ab+3a-4b-12=ab-2
=>3a-4b=10
Do đó, ta có hệ:
\(\left\{{}\begin{matrix}a+b=50\\3a-4b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=150\\3a-4b=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7b=140\\a+b=50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\a=30\end{matrix}\right.\)
Diện tích mảnh vườn là: \(20\cdot30=600\left(m^2\right)\)
Nửa chu vi hcn là: `100:2=50(m)`
Gọi chiều dài là `x (m)`
chiều rộng là `y (m)`
ĐK: `0 < y < x < 50`
Theo bài ra ta có hệ phương trình:
`{(x+y=50),(xy-2=(x-4)(y+3)):}`
`<=>{(x+y=50),(xy-2=xy+3x-4y-12):}`
`<=>{(x+y=50),(3x-4y=10):}`
`<=>{(x=30),(y=20):}`
Vậy diện tích mảnh vườn là: `30.20=600 m^2`.
Gọi x là CD của vườn (x > 0)
CR của vườn : x − 12(m)
S ban đầu của vườn : x(x − 12) (m2)
Chiều rộng khi giảm 4m : x − 16 (m)
Chiều dài khi tăng 3m : x + 3 (m)
S vườn sau khi tăng / giảm là : x − 16(x + 3) (m2)
Ta có pt :
x(x − 12) − 15 = (x − 16) (x + 3)
⇔ x2 − 12x − 15 = x2 − 13x − 48
⇔ x −33 = 0
⇔ x = 33 (nhận)
CD lúc đầu của vườn là: 33 mét
CR lúc đầu của vườn là : 33-12= 21 mét
Vậy CV lúc đầu của vườn là : (33+21) x 2 = 108(m)
Gọi chiều dài chiều rộng thửa ruộng lần lượt a ; b ( a > b> 0 )
Theo bài ra ta có hpt \(\hept{\begin{cases}2\left(a+b\right)=100\\\left(a+5\right)\left(b-2\right)=ab+30\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=50\\-2a+5b=40\end{cases}\Leftrightarrow}\hept{\begin{cases}a=30\\b=20\end{cases}}}\)(tm)
Vậy chiều dài ban đầu là 30 m
chiều rộng ban đầu là 20 m
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ:
a-b=13 và (a-5)(b+3)=ab-30
=>a-b=13 và 3a-5b=-15
=>a=40 và b=27
Diện tích vườn là 40*27=1080m2
Gọi chiều rộng của mảnh vườn ban đầu là x>0 (m)
Chiều dài ban đầu: \(x+2\) (m)
Sau khi tăng kích thước thì chiều rộng là: \(x+3\) (m)
Chiều dài khu vườn sau khi giảm: \(x+1\) (m)
Theo bài ra ta có pt:
\(\left(x+3\right)\left(x+1\right)=99\)
\(\Leftrightarrow x^2+4x-96=0\Rightarrow\left[{}\begin{matrix}x=-12\left(loại\right)\\x=8\end{matrix}\right.\)
Diện tích khu vườn ban đầu: \(8.\left(8+2\right)=80\left(m^2\right)\)
Lời giải:
Gọi chiều dài và chiều rộng khu vườn ban đầu lần lượt là $a,b$ (m)
Theo bài ra ta có:
$a+b=100:2=50(1)$
$(a+2)(b-1)=ab-17$
$\Leftrightarrow ab-a+2b-2=ab-17$
$\Leftrightarrow -a+2b=-15(2)$
Từ $(1); (2)\Rightarrow b=\frac{35}{3}; a=\frac{115}{3}$ (m)
Diện tích khu vườn lúc đầu: $S=ab=\frac{115}{3}.\frac{35}{3}=\frac{4025}{9}$ (m2)
nửa chu vi: 100/2 = 50 m
Gọi chiều rộng của mảnh vườn là x(m)(x>0)
=>chiều dài mảnh vườn là 50-x(m)
Diện tích mảnh vườn ban đầu là x(50-x)
chiều rộng khi tăng là x+3(m)
chiều dài khi giảm là 50-x-4=46-x(m)
Diện tích mới của mảnh vườn là:(x+3).(46-x)( m 2 )
Vì diện tích mới của mảnh vườn giảm 2m vuông nên ta có pt: (x+3)(46-x)=x(50-x)-2
Giải pt trên ta được x=20(TMĐK)
Vậy diện tích mảnh vườn là :20(50-20)=600( m 2 )
Gọi chiều rộng,chiều dài của thửa ruộng ban đầu lần lượt là x,y(m,0<x<y)
Nửa chu vi thửa ruộng là: 100:2=50(m)
=>x+y=50(1)
Diện tích của thửa ruộng ban đầu là :xy(m2)
Theo bài ra:
Chiều rộng thửa ruộng sau khi tăng thêm là: x+3(m)
Chiều dài thửa ruộng sau khi giảm là: y-4(m)
Diện tích vườn giảm 2m2
=> (x+3)(y-4)=xy-2(2)
Từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}x+y=50\\\left(x+3\right)\left(y-4\right)=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\xy-4x+3y-12=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=xy-2-xy+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=150\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=140\\x+y=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=30\end{matrix}\right.\)(TMĐK)
Vậy chiều dài ban đầu của thửa ruộng là 30m
chiều rộng ban đầu của thửa ruộng là 20m