K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

1, vt : \(\left(1-\dfrac{5+\sqrt{2}}{\sqrt{2}+1}\right).\sqrt{3+2\sqrt{2}}\)

=\(\dfrac{\sqrt{2}+1-5-\sqrt{2}}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}\)

=\(\dfrac{-4}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}+1\right)^2}\)

=\(\dfrac{-4\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

=-4

2, A=\(\left(\dfrac{\sqrt{x}}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right)\div\dfrac{2}{x+\sqrt{x}-2}\)

=\(\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)

=\(\left(\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)

=\(\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)

=\(\dfrac{-\sqrt{x}-2}{\sqrt{x}+1}\)

8 tháng 5 2022

a) Ta có: \(\left(2-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=\left[2-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\right]\left[2+\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\)\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2^2-\left(\sqrt{3}\right)^2=4-3=1\) (đpcm)

b) Ta có \(A=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\)\(=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}\right].\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)\(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

1.

\(Q=\left[\frac{\sqrt{x}+2}{(\sqrt{x}+1)^2}-\frac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right].\sqrt{x}(\sqrt{x}+1)\)

\(=\frac{\sqrt{x}(\sqrt{x}+2)}{\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x}-2)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}+2)(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2x}{x-1}\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

2.

\(A=\left[\frac{\sqrt{x}+2-(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{4\sqrt{x}}{x-4}\right].\frac{x-4}{\sqrt{x}+1}\)

\(=\left(\frac{4}{x-4}-\frac{4\sqrt{x}}{x-1}\right).\frac{x-4}{\sqrt{x}+1}=\frac{4(1-\sqrt{x})}{x-4}.\frac{x-4}{\sqrt{x}+1}=\frac{4(1-\sqrt{x})}{\sqrt{x}+1}\)

25 tháng 7 2023

\(a,P=\dfrac{3\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}+4-\sqrt{x}-1}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}=\dfrac{\left|\sqrt{5}-1\right|+3}{\left|\sqrt{5}-1\right|+2}=\dfrac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\dfrac{\sqrt{5}+2}{\sqrt{5}+1}\)

19 tháng 11 2021

Bài 1:

1) \(B=1:\dfrac{\left(x+2\right)\left(\sqrt{x}+1\right)+\left(x-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-\sqrt{x}}=\dfrac{\left(x-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

2) \(VT=\dfrac{\left(6a+1\right)\left(a+6\right)+\left(6a-1\right)\left(a-6\right)}{a\left(a-6\right)\left(a+6\right)}.\dfrac{\left(a-6\right)\left(a+6\right)}{a^2+1}\)

\(=\dfrac{12a^2+12}{a\left(a^2+1\right)}=\dfrac{12\left(a^2+1\right)}{a\left(a^2+1\right)}=\dfrac{12}{a}=VP\)

 

7 tháng 5 2022

mik cần gấp ạ^^

 

9 tháng 5 2022

\(P=\dfrac{1+\sqrt{x}-2\sqrt{x}}{\sqrt{x}\left(1+\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-\sqrt{x}}=\)

\(=\dfrac{\left(1-\sqrt{x}\right).\sqrt{x}.\left(1+\sqrt{x}\right)}{\sqrt{x}.\left(1+\sqrt{x}\right).\left(1-\sqrt{x}\right)}=1\)

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

20 tháng 8 2023

\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\\ =\dfrac{x+2-\left(2x-4\sqrt{x}\right)-\left(\sqrt{x}+1-x-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{x+2-2x+4\sqrt{x}-\sqrt{x}-1+x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)^2}\)

20 tháng 8 2023

\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(A=\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(A=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)

\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+1\right)}\)

\(A=\left(\dfrac{x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}+2-\sqrt{x}+3}{\sqrt{x}+2}\)

\(=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{5}{\sqrt{x}+2}\)

\(=\dfrac{5\left(4\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)