K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAC có 

MI là đường cao

MI là đường trung tuyến

Do đó: ΔMAC cân tại M

=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=180^0-2\cdot\widehat{ACB}\left(1\right)\)

ΔABC cân tại A

=>\(\widehat{BAC}=180^0-2\cdot\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AMC}=\widehat{BAC}\)

b:

ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)

 \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

=>\(\widehat{ABM}=180^0-\widehat{ABC}=180^0-\widehat{ACB}\left(3\right)\)

\(\widehat{CAN}+\widehat{CAM}=180^0\)(hai góc kề bù)

=>\(\widehat{CAN}+\widehat{ACB}=180^0\)

=>\(\widehat{CAN}=180^0-\widehat{ACB}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ABM}=\widehat{CAN}\)

Xét ΔABM và ΔCAN có

AB=CA

\(\widehat{ABM}=\widehat{CAN}\)

BM=AN

Do đó;ΔABM=ΔCAN

c: ΔABM=ΔCAN

=>NC=MA

mà MA=MC

nên NC=MC

\(\widehat{AMC}=\widehat{BAC}\)

mà \(\widehat{BAC}=45^0\)

nên \(\widehat{AMC}=45^0\)

Xét ΔCMN có CM=CN và \(\widehat{CMN}=45^0\)

nên ΔCMN vuông cân tại C

Bài 1. Cho tam giác ABC cân tại A có BAC = 45o. Từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm N sao cho AN = BM. Chứng minh:a) Chứng minh: ΔMAC cân.b) Chứng minh: AMC = BAC = 45oc) Chứng minh: ΔABM = ΔCAN.d) Chứng minh: ΔMCN vuông cânBài 2.  Cho ΔABC có góc A nhọn. Kẻ tia Ax ⊥ AB (tia AC nằm giữa Ax và AB ). Kẻ tia Ay ⊥ AC (tia AB nằm giữa Ay và AC). Lấy điểm E...
Đọc tiếp

Bài 1. Cho tam giác ABC cân tại A có BAC = 45o. Từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm N sao cho AN = BM. Chứng minh:

a) Chứng minh: ΔMAC cân.

b) Chứng minh: AMC = BAC = 45o

c) Chứng minh: ΔABM = ΔCAN.

d) Chứng minh: ΔMCN vuông cân

Bài 2.  Cho ΔABC có góc A nhọn. Kẻ tia Ax ⊥ AB (tia AC nằm giữa Ax và AB ). Kẻ tia Ay ⊥ AC (tia AB nằm giữa Ay và AC). Lấy điểm E và F lần lượt thuộc tia Ax và Ay sao cho AE = AB và

a) Chứng minh: BF = CE.

b) Gọi M và N lần lượt là trung điểm của BF và CE. Chứng minh: ΔAMN vuông cân.

Bài 3.  Trên cạnh BC của ΔABC lấy 2 điểm E và F sao cho BE = CF. Qua E và F vẽ các đường thẳng song song với BA chúng cắt cạnh AC tại G và H. Qua E vẽ đường thẳng song song với AC cắt AB tại D.

a) Chứng minh: AD = GE.

b) Chứng minh: ΔBDE = ΔFHC.

c) Chứng minh: AB = GE + FH.

Bài 4.  Cho tam giác ABC vuông tại A và AB = 2AC. Gọi E là trung điểm của AB. Trên tia đối của tia AC lấy điểm D sao cho AB = AD. Chứng minh rằng:

a) BC = DE.

b) BC ⊥ DE.

Bài 5. Cho ΔABC vuông cân tại A, M là trung điểm cạnh BC, E là điểm nằm giữa M và C. Vẽ BH ⊥ AE tại H và CK ⊥ AE tại K. CMR:

a) AM ⊥ BC

b) BH = AK

c) ΔMBH = ΔMAK

d) ΔMHK vuông cân.

2
13 tháng 2 2021

bài 1:

image

Bài 4: 

a) Ta có: AB=2AC(gt)

mà AB=2AE(E là trung điểm của AB)

nên AC=AE

Xét ΔBAC vuông tại A và ΔDAE vuông tại A có

BA=DA(gt)

AC=AE(gt)

Do đó: ΔBAC=ΔDAE(hai cạnh góc vuông)

Suy ra: BC=DE(hai cạnh tương ứng)

Bài 5: 

a) Ta có: ΔABC vuông cân tại A(gt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

⇒AM⊥BC(đpcm)