Cho tam giác ABC. Vẽ cung tròn tâm C bán kính bằng AB, cung tròn tâm B bán kính bằng AC, hai cung tròn này cắt nhau tại D (A, D thuộc hai nữa mặt phẳng đối nhau bờ BC) . Chứng minh rằng:
a) △ABC = △DBC
b) CD // AB, BD // AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
ΔΔABC và ΔΔDCB có AB=CD (gt)
BC chung AC=DB (gt)
Vậy ΔΔABC = ΔΔDCB (c.c.c)
Suy ra ˆBDC=ˆA=800BDC^=A^=800 (hai góc tương ứng)
b) Do ΔΔABC = ΔΔDCB (câu a) do đó ˆABC=ˆBCDABC^=BCD^ (hai góc tương ứng của hai tam giác bằng nhau)
Hai góc này ở vị trí so le trong của hai đường thẳng AB và CD cắt đường thẳng BC do đó CD // AB.