tìm số nguyên lớn nhất không vượt quá ((3+căn5)/2)^7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=\left(2+\sqrt{2}\right)^7+\left(2-\sqrt{2}\right)^7\)
\(P=2^7+7.2^6\sqrt{2}+21.2^5\left(\sqrt{2}\right)^2+...+7.2\left(\sqrt{2}\right)^6+\left(\sqrt{2}\right)^7\)\(+2^7-7.2^6\sqrt{2}+21.2^5\left(\sqrt{2}\right)^2-...+7.2\left(\sqrt{2}\right)^6-\left(\sqrt{2}\right)^7\)
\(P=2.2^7+2.21.2^5.\left(\sqrt{2}\right)^2+2.35.2^3.\left(\sqrt{2}\right)^4+2.7.2.\left(\sqrt{2}\right)^6\)
\(P=2^8+21.2^7+35.2^6+7.2^5\)
\(P=5408\)
\(\Rightarrow\left(2+\sqrt{2}\right)^7=5408-\left(2-\sqrt{2}\right)^7\)
Do \(0< \left(2-\sqrt{2}\right)^7< 1\) nên suy ra \(5047< \left(2+\sqrt{2}\right)^7< 5048\)
Vậy số nguyên lớn nhất không vượt quá \(\left(2+\sqrt{2}\right)^7\) là 5047.
(Sau này ta kí hiệu như thế này cho gọn.)
Ta có: \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]=\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\)
Mà \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]\) có kết quả là số nguyên
Nên \(\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\) cũng phải có kết quả là số nguyên. Hay \(\frac{n}{2};\frac{n}{3};\frac{n}{4}\) đều là số nguyên.
=> n chia hết cho cả 2;3 và 4
Vậy n sẽ là Bội của 2;3;4 hay n = 24k (k \(\in\) N*, k < 84) (BCNN(2;3;4)=24)
\(n\in\left\{24;48;72;96;120;...;1992\right\}\) Không có số 0 vì số 0 không phải là số nguyên dương.
Các bạn làm sai rồi
-64/7 = -9,1 < -9 => Số nguyên lớn nhất không vượt quá -64/7 hay -9,1 là -10
ta xét 2 TH:
+)A>0 (luôn đúng)
+)ta có : 1/n2 < 1/(n-1).n với n>1
=>\(A<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2013}-\frac{1}{2014}=\frac{1}{1}-\frac{1}{2014}=\frac{2013}{2014}<1\)
=>A<1
do đó 0<A<1 <=>[A]=0
842 nha bn
là 842 nha bn