K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Đối với lớp 8 cái này khó; giải theo cách bình thường nha

+) Giả sử \(abc\) không chia hết cho 3 \(\Rightarrow a;b;c\) không chia hết cho 3

\(\Rightarrow a^2;b^2;c^2\)chia 3 dư 1 \(\Rightarrow a^2+b^2\)  chia 3 dư 2

Mà \(c^2\) chia 3 dư 1 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai

Vậy \(abc⋮3\) (1)

+) Giả sử  \(abc\) không chia hết cho 4 \(\Rightarrow a;b;c\) không chia hết cho 4

\(\Rightarrow\)\(a^2;b^2;c^2\)chia 4 dư 1 \(\Rightarrow a^2+b^2\) chia 4 dư 2

Mà \(c^2\)chia 4 dư 1 nên \(a^2+b^2\ne c^2\)=> Điều giả sử sai

Vậy \(abc⋮4\)(2)

+) +) Giả sử  \(abc\) không chia hết cho 5 \(\Rightarrow a;b;c\) không chia hết cho 5

\(\Rightarrow a^2;b^2;c^2\) chia 5 dư 1;4 \(\Rightarrow a^2+b^2\) chia hết cho 5

Mà \(c^2\)chia 5 dư 1;4 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai

Vậy \(abc⋮5\)(3)

Mà (3;4;5) = 1 nên từ (1);(2);(3) \(\Rightarrow abc⋮60\)(đpcm)

14 tháng 2 2018

Ta có;  60 = 3.4.5

Đặt M = abc

Nếu a, b, c đều không chia hết cho 3 => a2, b2 và cchia hết cho 3 đều dư 1=> a2 khác  b+ c2 .Do đó có ít nhất 1 số chia hết cho 3. Vậy M  \(⋮\)3

Nếu a, b, c đều không chia hết cho 5 =>  a2, b2 và c2 chia 5 dư 1 hoặc 4

=>  b2 + c2 chia 5 thì dư 2; 0 hoặc 3.

=> a2 khác  b2 + c2. Do đó có ít nhất 1 số chia hết cho 5. Vậy M \(⋮\) 5

Nếu a, b, c là các số lẻ =>  b2 và c2 chia hết cho 4 dư 1.

=>  b2 + c2 = 4 dư 1 =>  a2 khác b2 + c2

Do đó 1 trong 2 số a, b phải là số chẵn

Giả sử b là số chẵn

Nếu c là số chẵn =>  M  \(⋮\) 4

Nếu c là số lẻ mà a2 = b2 + c2 =>  a là số lẻ

\(\Rightarrow b^2=\left(a-c\right)\left(a+b\right)\Rightarrow\left(\frac{b}{2}\right)^2=\left(\frac{a+c}{2}\right)\left(\frac{a-c}{2}\right)\)

\(\Rightarrow\frac{b}{2}\)chẵn \(\Rightarrow b⋮4\Rightarrow M⋮4\)

Vậy M = abc \(⋮\)3 . 4. 5 = 60

6 tháng 8 2023

Có : a + b + c = 0

=> (a + b)5 = (-c)5

      a5 + 5a4b + 10a3b+ 10a2b3 + 5ab4 + b5 = -c5

      a5 + b5 + c5 = -5a4b - 10a3b2 - 10a2b3 - 5ab4

       a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)

      a5 + b5 + c= -5ab[(a3 + b3) + (2a2b + 2ab2)]

      a5 + b5 + c5 = -5ab[(a + b)(a2 - ab + b2) + 2ab(a + b)]

      a5 + b5 + c5 = -5ab(a + b)(a2 + b2 + ab)  

      a5 + b5 + c5 = 5abc(a2 + b2 + ab)   (do a+b+c=0=> a+b=-c)

      2(a5 + b5 + c5) = 5abc(2a2 + 2b2 + 2ab)

      2(a5 + b5 + c5) = 5abc[a2 + b2 +(a2 + 2ab + b2)]

      2(a5 + b5 + c5) = 5abc[a2 + b2 + (a + b)2]

      2(a5 + b5 + c5) = 5abc(a2 + b2 + c2)    (do a+b=-c=> (a +b )2 = c2

    \(\Leftrightarrow\) \(a^5+b^5+c^5=\dfrac{5}{2}abc\left(a^2+b^2+c^2\right)\)

Vậy...

NV
24 tháng 4 2021

- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)

- Nếu \(abc< 0\Rightarrow\)  trong 3 số a; b; c có ít nhất 1 số âm

Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)

Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)

\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)

Vậy \(a=b=c=0\)

b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0

Đặt a=3x-2; b=-2x-3

Pt sẽ trở thành:

a^5+b^5-(a+b)^5=0

=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0

=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0

=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0

=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2+2ab)=0

=>-5ab(a+b)(a^2+b^2+ab)=0

=>ab(a+b)=0

=>(3x-2)(-2x-3)(5-x)=0

=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)

6 tháng 8 2023

bn oi, con cau a nx ma

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)