K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2021

a) Xét tam giác ADB và tam giác AEC:

^ADB = ^AEC (=90o)

AB = AC (∆ABC cân tại A)

^A chung

=> Tam giác ADB = Tam giác AEC (ch - gn)

=> AD = AE (2 cạnh tương ứng)

=> Δ ADE cân tại A

b)  Xét tam giác AED: ^A + ^AED + ^ADE = 180o (tổng 3 góc trong tam giác)

Mà ^AED = ^ADE (Δ ADE cân tại A) 

=>  ^A = 2 ^AED (1)

Xét tam giác ABC: ^A + ^B + ^C = 180o (tổng 3 góc trong tam giác)

Mà ^B = ^C (Δ ABC cân tại A) 

=>  ^A = 2 ^B (2)

Từ (1) và (2) => ^B = ^AED

Mà 2 góc này ở vị trí đồng vị

=> DE // BC (dhnb)

c) Xét tam giác BEC và tam giác CDB:

^BEC = ^CDB (= 90o)

BC chung

^B = ^C (∆ABC cân tại A)

=> Tam giác CBE = Tam giác CDB (ch - gn)

=> IB = IC (2 cạnh tương ứng)

d) Xét tam giác ABI và tam giác ACI:

AB = AC (∆ABC cân tại A)

AI chung

IB = IC (cmt)

=> Tam giác ABI = Tam giác ACI (c - c - c)

=> ^BAI = ^CAI (2 góc tương ứng)

=> AI là phân giác ^A hay AM là phân giác ^A (M\(\in AI\))

Xét ∆ABC cân tại A có:  AM là phân giác ^A (cmt)

=> AM là đường cao (TC các đường trong tam giác)

=> AM \(\perp\) BC 

 

a: Xét ΔADH vuông tại H và ΔADE vuông tại E có

AD chung

góc HAD=góc EAD

=>ΔADH=ΔADE

=>Dh=DE

b: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có

DH=DE

góc HDK=góc EDC

=>ΔDHK=ΔDEC

=>DK=DC

c: AH+HK=AK

AE+EC=AC

mà AH=AE và HK=EC

nên AK=AC

=>ΔAKC cân tại A

mà AF là trung tuyến

nên AF là phân giác của góc KAC

=>A,D,F thẳng hàng

10 tháng 10 2018

27 tháng 12 2022

này là chép mạng mà bro

https://thuvienhoclieu.com/cac-dang-toan-hinh-hoc-7-hoc-ky-1-co-loi-giai/ 

câu 9a

a: Xét ΔABC có BD là đường phân giác

nên AB/BC=AD/DC

=>AD/DC=AC/BC(1)

Xét ΔABC có CE là đường phân giác

nên AE/EB=AC/BC(2)

Từ (1) và (2) suy ra AD/DC=AE/EB

=>ED//BC

=>\(\widehat{EDB}=\widehat{DBC}\)

mà \(\widehat{DBC}=\widehat{EBD}\)

nên \(\widehat{EDB}=\widehat{EBD}\)

b: Xét ΔABC có DE//BC

nên AE/AB=AD/AC

mà AB=AC

nên AE=AD

hay ΔADE cân tại A

6 tháng 2 2022

AB/BC=AD/DC là vậy ạ

11 tháng 10 2017

b: Xét ΔABD và ΔACE có

\(\widehat{BAD}\) chung

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

c: Xét ΔABC có 

AE/AB=AD/AC

Do đó: DE//BC

d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

Bài 1: Cho ABC cân tại A có A <90 độ Vẽ BE ⊥AC tại E và CD ⊥ AB tại D. a) Chứng minh BC=CD và tam giác ADE cân tại A. b) Gọi H là giao điểm của BE và CD. Chứng minh AH là tia phân giác của BAC c) Chimg minh DE//BC. d) Gọi M là trung điểm cạnh BC. Chứng minh ba điểm A,H,M thẳng hàng.Bài 2: Cho ABC vuông tại B. AD là tin phân giác của BAC (D ∈ BC).Kẻ DI ⊥ AC(I ∈ AC) a) Chứng minh tam giác ABD=tam giác AID b) So sánh DB và DC. c) Từ C kẻ...
Đọc tiếp

Bài 1: Cho ABC cân tại A có A <90 độ Vẽ BE ⊥AC tại E và CD ⊥ AB tại D. a) Chứng minh BC=CD và tam giác ADE cân tại A. b) Gọi H là giao điểm của BE và CD. Chứng minh AH là tia phân giác của BAC c) Chimg minh DE//BC. d) Gọi M là trung điểm cạnh BC. Chứng minh ba điểm A,H,M thẳng hàng.Bài 2: Cho ABC vuông tại B. AD là tin phân giác của BAC (D ∈ BC).Kẻ DI ⊥ AC(I ∈ AC) a) Chứng minh tam giác ABD=tam giác AID b) So sánh DB và DC. c) Từ C kẻ đường thẳng vuông góc với AD, cắt AD tại K. Hai đường thẳng CK và AB cắt nhau tại E. Chứng minh K là trung điểm của CE và tam giác AEC cân d) Chứng minh BI // EC. e) Chứng minh ba điểm E. D. I thẳng hàng BÀI 3. Cho tam giác ABC cân tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho DM – BM a. Chứng minh tam giác BMC = tam giác DMA. Suy ra AD//BC b. Chứng minh tam giác ACD là tam giác cân c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE Bài 4. Cho tam giác ABC cân tại A, đường phân giác AH a) Chứng minh tam giác ABH bằng tam giác ACH b Chứng minh AH là đường trung tuyến ABC. Bài 5. Cho tam giác .07C cân tại A có ABC = 70. Kẻ BD ⊥C(D∈AC), C⊥(E∈AB) và BD, CE cắt nhau tại H. a) Tính số do các góc còn lại của tam giác ABC. b) Chứng minh BD = CE c) Chứng minh tia AH là tia phân giác của góc BAC .

0
15 tháng 2 2018

a, tg ADB và tg AEC có

^E1 = ^D1 = 90 độ
AB = AC 
^A chung
=> tg ADB = tg AEC
=> AD = AE
=> tg ADE cân
b, tg ABI và tg ACI có
^E1 = ^D1 = 90 độ
AI chung
 AB = AC
=> tg ABI = tg ACI 
=> ^A1 = ^A2 ( góc t/ứ)
=> IB = IC ( cạnh t/ứ)
=> tg IBC cân
c, vì ^A1 = ^A2 ( câu b )
=> AI là tpg của góc EAD
15 tháng 2 2018

hỏi một đằng trả lời một nẻo ah

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>BA=BE và DA=DE

Xét ΔBAE có BA=BE

nên ΔBAE cân tại B

c: Ta có: DA=DE
DE<DC(ΔDEC vuông tại E nên DC là cạnh huyền)

=>DA<DC

d: BA=BE

=>B nằm trên đường trung trực của AE(1)

DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD vuông góc với AE tại trung điểm của AE

=>BD\(\perp\)AE tại M và M là trung điểm của AE

CG=2GM nên \(GM=\dfrac{1}{2}CG\)
CG+GM=CM

=>\(\dfrac{1}{2}CG+CG=CM\)

=>\(CM=\dfrac{3}{2}CG\)

=>\(CG=\dfrac{2}{3}CM\)

 

Xét ΔEAC có

CM là đường trung tuyến

\(CG=\dfrac{2}{3}CM\)

Do đó: G là trọng tâm của ΔEAC

Xét ΔEAC có

G là trọng tâm

N là trung điểm của EC

Do đó: A,G,N thẳng hàng