K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Ta có: \(Q+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{b+c}\right)+\left(1+\frac{c}{a+b}\right)\)

\(Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

\(Q+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(Q+3=2028\cdot\frac{1}{3}=676\)

=> Q = 676 - 3 = 673

12 tháng 2 2018

Ta có:\(\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(a+b+c\right)=\frac{1}{3}.2028\)

=>\(\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{c+a}{c+a}+\frac{b}{c+a}\right)=676\)

=>\(\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}+3=676\)

=>\(Q=673\)

Vậy Q=673

12 tháng 2 2018

dự đoán của chúa Pain

a=b=c=\(\frac{2028}{3}\)

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{2\left(a+b+c\right)}\left(cosi\right).\)

\(Q\ge\frac{\left(a+b+c\right)}{2\left(a+b+c\right)}+\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{2\left(a+b+c\right)}\)

\(Q\ge\frac{1}{2}+\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\left(a+b+c\right)}\)

có 

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{a^2b^2c^2}}=3\sqrt[3]{abc}\)

có   

\(a+b+c\ge3\sqrt[3]{abc}\)

thay vào ta được

\(Q\ge\frac{1}{2}+\frac{3\sqrt[3]{abc}}{3\sqrt[3]{abc}}=\frac{1}{2}+1=\frac{3}{2}\)

dấu = xảy ra khi \(a=b=c=\frac{2028}{3}=676\)

thử thay vào ta được

\(Q=\frac{676}{2\left(676\right)}+\frac{676}{2\left(676\right)}+\frac{676}{2\left(676\right)}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\) ( đúng )

4 tháng 8 2017

ban oi mk dat cau hoi nay cac ban giup mk vs

4 tháng 8 2017

1/2x + 3/5 . ( x- 2 ) = 3

7 tháng 10 2016

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=-3\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=9\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=9\)

Mà \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=7\)nên \(2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

\(\Rightarrow\frac{c}{abc}+\frac{b}{abc}+\frac{a}{abc}=1\)\(\Rightarrow\frac{1}{A}=\frac{a+b+c}{abc}=1\Rightarrow A=1\)

21 tháng 10 2017

chịu luon

13 tháng 7 2016

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

  • TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
  • TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

25 tháng 3 2018

Gợi ý : 
Bước 1 : Cộng 6 vào các hạng tử đã cho ở đề bài 

Bước 2 : xét 2 TH : 
TH1 : a + b + c = 0 

TH2 : a + b + c khác 0 

Chúc học tốt !!!! 

18 tháng 12 2016

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)

Xét a+b+c=0

\(\Rightarrow a+b=-c,c+b=-a,a+c=-b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)

Xét a+b+c\(\ne0\)

\(\Rightarrow a+b=2c,b+c=2a,c+a=2b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=8\)

 

18 tháng 12 2016

Giải:
+) Xét a + b + c = 0

\(\Rightarrow-a=b+c\)

\(\Rightarrow-b=a+c\)

\(\Rightarrow-c=a+b\)

Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{-c}{c}=\frac{-a}{a}=\frac{-b}{b}=-1\)

Lại có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=-1\)

+) Xét \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Ta có:

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)

Vậy M = -1 hoặc M = 8

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)