Cho hàm số y=-x^2 (P) và y=4x+4 (d) a) tìm toạ độ giao điểm của (P) và (d) b) xác định đường thẳng (d'): y=ax+b, biết d' song song d và d' cắt (P) tại điểm có hoành độ là -1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(d\right):y=ax+b//y=-\dfrac{1}{2}x+3\Leftrightarrow a=-\dfrac{1}{2}\left(1\right)\)
(d) cắt trục hoành tai điểm có hoành độ 2
\(\Leftrightarrow y=0;x=2\Leftrightarrow2a+b=0\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=1\end{matrix}\right.\)
Vậy đths là \(y=-\dfrac{1}{2}x+1\)
Vì (d)//y=-1/2x+3 nên \(a=-\dfrac{1}{2}\)
Thay x=2 và y=0 vào (d), ta được:
\(b+\dfrac{-1}{2}\cdot2=0\)
hay b=1
Bài 1:
a:
b: Vì (d')//(d) nên \(\left\{{}\begin{matrix}a=-2\\b< >3\end{matrix}\right.\)
vậy: (d'): y=-2x+b
Thay x=2 và y=0 vào (d'), ta được:
\(b-2\cdot2=0\)
=>b-4=0
=>b=4
Vậy: (d'): y=-2x+4
\(a,\Leftrightarrow\left\{{}\begin{matrix}a=3;b\ne1\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\B\left(-2;0\right)\inđths\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=\dfrac{1}{3}\end{matrix}\right.\)
a) pt hoành độ giao điểm \(x^2+4x+4=0\Rightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)
\(\Rightarrow y=-\left(-2\right)^2=-4\Rightarrow\) tọa độ giao điểm là \(\left(-2;-4\right)\)
b) Vì \((d)\parallel (d')\Rightarrow \) \(\left\{{}\begin{matrix}a=4\\b\ne4\end{matrix}\right.\Rightarrow y=4x+b\)
Vì (d') cắt (P) tại điểm có hoành độ là -1 \(y=-\left(-1\right)^2=-1\)
\(\Rightarrow\) điểm đó có tọa độ là \(\left(-1;-1\right)\)
\(\Rightarrow-1=-4+b\Rightarrow b=3\Rightarrow y=4x+3\)