K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

Tại sao phải chứng minh khi nhìn vào đã biết

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM

25 tháng 7 2020

(AB<AC). Lấy M thuộc HC sao cho HB=HM. Kẻ CN vuông góc AM, CN cắt AH tại K

25 tháng 7 2020

Bạn đăng câu này nhưng đừng sửa đăng câu mới đi được chứ. Cái này hay bị lỗi lắm

13 tháng 5 2021

b) ΔAHB vuông tại H

Áp dụng định lý Pi-ta-go ta có: AH2+ BH2= AB2

                                                         ⇒ 42 + 22 = AB2

                                                         ⇒AB2 = 20

                                                ⇒AB = √20

ΔAHC vuông tại H

Áp dụng định lý Pi-ta-go, ta có: AH2 + HC2 = AC2

                                                       ⇒4+82 = AC2

                                                         ⇒ AC= 80

                                                ⇒AC = √80

b)Vì AB>AC(√20>√80)

⇒góc C lớn hơn góc B (quan hệ giữa góc và cạnh đối diện)

13 tháng 5 2021

Bạn tự vẽ hình nhé