Tìm số nguyên n , biết
a, n+2 chia hết cho n -1
b, 3n - 5 chia hết cho n- 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow n-1+7⋮n-1\)
Mà \(n-1⋮n-1\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n\in\left\{2;8\right\}\)
\(b,\Rightarrow3\left(n+1\right)+2⋮n+1\)
Mà \(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\\ \Rightarrow n=1\left(n\ne0\right)\)
\(a,\Rightarrow3\left(n+2\right)-7⋮\left(n+2\right)\\ \Rightarrow n+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-9;-3;-1;5\right\}\\ b,\Rightarrow\left(n^2+5n-5n-25+23\right)⋮\left(n+5\right)\\ \Rightarrow\left[n\left(n+5\right)-5\left(n+5\right)+23\right]⋮\left(n+5\right)\\ \Rightarrow n+5\inƯ\left(23\right)=\left\{-23;-1;1;23\right\}\\ \Rightarrow n\in\left\{-28;-6;-4;18\right\}\)
Lời giải:
a.
$3n-1\vdots n+2$
$\Rightarrow 3(n+2)-7\vdots n+2$
$\Rightarrow 7\vdots n+2$
$\Rightarrow n+2\in \left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in\left\{-1; -3; 5; -9\right\}$
b.
$n^2-2\vdots n+5$
$\Rightarrow n(n+5)-5(n+5)+23\vdots n+5$
$\Rightarrow (n+5)(n-5)+23\vdots n+5$
$\Rightarrow 23\vdots n+5$
$\Rightarrow n+5\in\left\{\pm 1;\pm 23\right\}$
$\Rightarrow n\in\left\{-4; -6; 18; -28\right\}$
a) 3n + 2 chia hết cho n - 1
\(\Rightarrow\) 3n - 3 + 5 chia hết cho n - 1
\(\Rightarrow\) 3(n - 1) + 5 chia hết cho n - 1
\(\Rightarrow\) 5 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(5) = {-1; 1; -5; 5}
\(\Rightarrow\) n \(\in\) {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
\(\Rightarrow\) 3n - 12 + 36 chia hết cho n - 4
\(\Rightarrow\) 3(n - 4) + 36 chia hết cho n - 4
\(\Rightarrow\) 36 chia hết cho n - 4
\(\Rightarrow\) n - 4 \(\in\) Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
\(\Rightarrow\) n \(\in\) {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
\(\Rightarrow\) 3n + 3 + 2 chia hết cho n + 1
\(\Rightarrow\) 3(n + 1) + 2 chia hết cho n + 1
\(\Rightarrow\) 2 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(2) = {-1; 1; -2; 2}
\(\Rightarrow\) n \(\in\) {0; 2; -1; 3}
Tìm số nguyên n sao cho
a, [3n+2]chia hết cho[n-1]
b,[3n+24]chia hết cho[n-4]
c,[n2+5]chia hết cho[n+1]
a,3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
Bạn làm tiếp nha
c,n2+5 chia hết cho n+1
=>n2-1+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
Bạn tự làm tiếp nha
n2 + n + 17 ⋮ n + 1
n( n + 1 ) + 17 ⋮ n + 1
Vì n( n + 1 ) ⋮ n + 1
=> 17 ⋮ n + 1
=> n + 1 thuộc Ư(17) = { 1; 17; -1; -17 }
Tự làm
b) n2 + 25 ⋮ n + 2
n2 + 2n - 2n + 25 ⋮ n + 2
n( n + 2 ) - ( 2n - 25 ) ⋮ n + 2
Vì n( n + 2 ) ⋮ n + 2
=> 2n - 25 ⋮ n + 2
2n + 4 - 29 ⋮ n + 2
2( n + 2 ) - 29 ⋮ n + 2
Vì 2( n + 2 ) ⋮ n + 2
=> 29 ⋮ n + 2
=> n + 2 thuộc Ư(29) = { 1; 29; -1; -29 }
Tự làm
c) 3n2 + 5 ⋮ 3n + 1
3n2 + n - n + 5 ⋮ 3n + 1
n( 3n + 1 ) - ( n - 5 ) ⋮ 3n + 1
Vì n( 3n + 1 ) ⋮ 3n + 1
=> n - 5 ⋮ 3n + 1
<=> 3( n - 5 ) ⋮ 3n + 1
<=> 3n - 15 ⋮ 3n + 1
<=> 3n + 1 - 16 ⋮ 3n + 1
Vì 3n + 1 ⋮ 3n + 1
=> 16 ⋮ 3n + 1
=> 3n + 1 thuộc Ư(16) = { 1; 2; 4; 8; 16; -1; -2; -4; -8; -16 }
=> tự làm nốt xong nhớ thay x vào xem có thỏa mãn ko
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
a,n+5 chia hết cho n-2
=(n-2)+7 chia hết cho n-2
=>7 chia hết cho n-2
=>n-2=-7;-1;1;7
=>n=-5;1;3;9
vậy n=-5;1;3;9
b,3n-5 chia hết cho n-2
=>3n-6+1 chia hết cho n-2
=>3(n-2)+1 chia hết cho n-2
=>1 chia hết cho n-2
=>n-2=-1;1
=>n=1;3
a) n + 5 \(⋮\)n - 2
=> ( n - 2 )+ 7 \(⋮\)n - 2
Mà n - 2 \(⋮\)n - 2 nên 7 \(⋮\)n - 2
=> n - 2 e Ư ( 7 ) = { \(\pm\)1; \(\pm\)7 }
Vậy n e { 3; 1 ; 9 ; -5 }
b) Làm tương tự...
a, n+2 chia hết cho n-1
=> n-1+3 chia hết cho n-1
=> 3 chia hết cho n-1
=> n-1 thuộc ước của 3
=> n-1 thuộc {-3;-1;1;3}
=> n thuộc {-2;0;2;4}
b, 3n-5 chia hết cho n-2
=> 3n-6+1 chia hết cho n-2
=> 3(n-2)+1 chia hết cho n-2
=> 1 chia hết cho n-2
=> n-2 là ước của 1
=> n-2 thuộc {-1;1}
=> n thuộc {1;3}