K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

Ta có a + b = 1 nên  \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)

Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)

\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

9 tháng 2 2018

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

11 tháng 2 2022

3)undefined

NV
13 tháng 2 2022

1.

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)

Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)

\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)

\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)

\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)

\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)

NV
18 tháng 9 2021

\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)

\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)

\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

18 tháng 9 2021

Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ 

a3+b3+ab=(a+b)3-3ab(a+b)+ab=(a+b)3-ab(3a+3b-1)

=(a+b)3-ab(2a+4b)

=(a+b)3-2ab(a+2b)             (đề bài sai phải không????)

1 tháng 1 2020

Áp dụng liên tiếp AM - GM và Cauchy - Schwarz ta có :

\(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left(a^2+b^2\right)}}\)

   \(=\frac{a^2+ab+1}{\sqrt{a^2+ab+1}}\)

\(=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\)

\(=\frac{1}{\sqrt{5}}\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+a^2+c^2\right]}\)

\(\ge\frac{1}{\sqrt{5}}\left[\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{4}b+a+c\right]\)

\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

Chứng minh tương tự và công lại ta có đpcm 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

                       

30 tháng 11 2019

Ta có: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}=\frac{a^2+ab+1}{\sqrt{a^2+ab+2ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+a^2+b^2+c^2}}=\sqrt{a^2+ab+1}\)

\(\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}=\sqrt{\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2}\)

\(=\frac{1}{\sqrt{5}}.\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2\right)}\)

\(\ge\frac{1}{\sqrt{5}}\sqrt{\left(\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{2}b+a+c\right)^2}\)

\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

Tương tự ta cũng chứng minh đc:

 \(\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}b+\frac{3}{2}c+a\right)\)

\(\frac{c^2+ca+1}{\sqrt{c^2+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}c+\frac{3}{2}a+b\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(5a+5b+5c\right)\)

\(=\sqrt{5}\left(a+b+c\right)\)

Dấu "=" xảy ra <=> a = b = c =\(\frac{1}{\sqrt{3}}\)

26 tháng 2 2021

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

26 tháng 2 2021

sai rồi nhé bạn