Cho hình vuông ABCD có cạnh AB 10cm, biết : M là trung điểm của BC, N là trung điểm của DC. AN cắt BM tại O. tính S AOND.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác L BCM = tam giác L CDN (2 cạnh góc L = nhau)
=> CDN^ = BCM^
lại có:
BMC^ = DCI^ (so le trong)
=> CID^ =CBM^ = 1v (xét 2 tam giác CDI và CBM)
gọi P là trung điểm của CD và Q là giao điểm của AP và DN
ta có tứ giác AMCP là hình bình hành vì có AM//=CP
=> AP // CM
=> AP L DN
xét tam giác DCI có P là trung điểm của CD và PQ // CI nên Q là trung điểm của DI
vậy AQ là đường cao vùa là trung tuyến của tam giác ADI => tam giác ADI cân tại A => AD=AI
~~~~~~~~~~~~~~~~~~~~ ai đi qua nhớ để lại ~~~~~~~~~~~~~~~~~~
Kéo dài BO cắt AC tại H.Nhận thấy O là trọng tâm tam giác ABC>>>BO=2/3BH.Mà BH dễ tính do tam giác ABC vuông cân.
>>>Tính được BO(nhớ k nha)
a ) Chu vi hình vuông ABCD là :
12 x 4 = 48 ( cm )
Diện tích hình vuông ABCD là :
12 x 12 = 144 ( cm2 )
b ) Diện tích tam giác ABN bằng 1/2 diện tích hình vuông , vậy diện tích tam giác ABN là :
144 : 2 = 72 ( cm2 )
Tam giác BMN có đáy BM = 1/2 BC = 12 : 2 = 6 ( cm )
Và đường cao tương ứng là đoạn NC = 1/2 CD = 12 : 2 = 6 ( cm )
Diện tích tam giác BMN bằng :
6 x 6 : 2 = 18 ( cm2 )
Vì 72/18 = 4 nên diện tích tam giác ABN gấp 4 lần diện tích tam giác BMN .
c) dt AMN = dt ABCD - ( dt ABM + dt MCN + dt ADN )
= 144 - ( 36 + 18 + 36 )
= 54 cm2 .
Hai tam giác ABN và BMN có cùng đáy NB mà dt ABN gấp 4 lần dt BMN nên đường cao hạ từ đỉnh A gấp 4 lần đường cao hạ từ đỉnh M .
Xét hai tam giác AON và MON có cùng đáy NO và đường cao hạ từ đỉnh A gấp 4 lần đường cao hạ từ đỉnh M nên dt tam giác AON gấp 4 lần dt tam giác MON .
Vậy dt tam giác AON là :
54 : ( 4 + 1 ) x 4 = 43,2 ( cm2 )
dt tứ giác AOND = dt tam giác AON + dt tam giác AND .
= 43 ,2 + 36
dt tứ giác AOND = 79,2 ( cm2 )
AN không cắt AM tại O
=> Sai đề
Xem lại đề. An cắt AM tại A. Do đó không thể tính SAOND